• Title/Summary/Keyword: laboratory and field tests

Search Result 738, Processing Time 0.033 seconds

Development of a Data Acquisition System for the Long-term Monitoring of Plum (Japanese apricot) Farm Environment and Soil

  • Akhter, Tangina;Ali, Mohammod;Cha, Jaeyoon;Park, Seong-Jin;Jang, Gyeang;Yang, Kyu-Won;Kim, Hyuck-Joo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.426-439
    • /
    • 2018
  • Purpose: To continuously monitor soil and climatic properties, a data acquisition system (DAQ) was developed and tested in plum farms (Gyewol-ri and Haechang-ri, Suncheon, Korea). Methods: The DAQ consisted of a Raspberry-Pi processor, a modem, and an ADC board with multiple sensors (soil moisture content (SEN0193), soil temperature (DS18B20), climatic temperature and humidity (DHT22), and rainfall gauge (TR-525M)). In the laboratory, various tests were conducted to calibrate SEN0193 at different soil moistures, soil temperatures, depths, and bulk densities. For performance comparison of the SEN0193 sensor, two commercial moisture sensors (SMS-BTA and WT-1000B) were tested in the field. The collected field data in Raspberry-Pi were transmitted and stored on a web server database through a commercial communications wireless network. Results: In laboratory tests, it was found that the SEN0193 sensor voltage reading increased significantly with an increase in soil bulk density. A linear calibration equation was developed between voltage and soil moisture content depending on the farm soil bulk density. In field tests, the SEN0193 sensor showed linearity (R = 0.76 and 0.73) between output voltage and moisture content; however, the other two sensors showed no linearity, indicating that site-specific calibration is important for accurate sensing. In the long-term monitoring results, it was observed that the measured climate temperature was almost the same as website information. Soil temperature information was higher than the values measured by DS18B20 during spring and summer. However, the local rainfall measured using TR 525M was significantly different from the values on the website. Conclusion: Based on the test results obtained using the developed monitoring system, it is thought that the measurement of various parameters using one device would be helpful in monitoring plum growth. Field data from the local farm monitoring system can be coupled with website information from the weather station and used more efficiently.

Durablity Test and Field Application of Marine Concrete (항만콘크리트의 내구실험과 현장적용)

  • 강희철;정원기;이규정;박우선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.676-681
    • /
    • 2000
  • This paper covers durability and field application of marine concrete which have been enhanced the resistance against deterioration in seawater. Fly ash concrete is applied to make the concrete with good durability. It is well known fly ash in concrete has a good performance preventing fro a sulphate attack and a steel corrosion. Several durability tests were performed to find characteristics of marine concrete which is proposed in this paper comparing with normal concrete. Field application was executed to compare results with laboratory test and to give a reliability to engineers. The project was supported by Ministry of Marine Affairs and Fisheries for two years.

  • PDF

Characteristics of Undrained Static Shear Behavior for Sand Due to Aging Effect (Aging 효과에 따른 모래의 비배수 정적전단거동 특성)

  • 김영수;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.137-150
    • /
    • 2004
  • Aging effect of sands showed insignificant result in comparison with that of clay, so that it has not been studied so far. But, as penetration resistance increase has been observed with the lapse of time after deposition and disturbance, aging effect of sands has been actively investigated by field tests, and recently many researchers are performing not oかy field tests but also laboratory tests on sands, so aging effects of sands have been also examined by laboratory tests. In this study, to observe the aging effect of undrained static shear behavior for Nak-Dong River sand, undrained static triaxial tests were performed with changing relative density$(D_r)$, consolidation stress ratio$(K_c)$, and consolidation time. These tests showed that modulus within elastic section increased as consolidation time increased, and in addition, phase transformation point strength$(S_{PT})$ and critical stress ratio point strength $(S_{CSR})$ also increased. But pore water pressure ratio$(u/{p_c}')$ decreased as consolidation time increased, so with this various result, aging effect of static shear for sands can be observed as well.

A Study on Field Application of Glass Fiber-reinforced Asphalt Mixtures (유리섬유 보강 아스팔트 혼합물의 현장 적용성 평가)

  • Ohm, Byung-Sik;Yoo, Pyeong-Jun;Ham, Sang-Min;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2016
  • PURPOSES : This study evaluated the field applicability and laboratory performance of glass fiber-reinforced asphalt (GFRA) mixtures. METHODS : The general hot-mix asphalt (HMA) and GFRA mixtures were paved in five sites, including three national highways, one express highway, and an arterial road, to evaluate field applicability and durability. The plant mixing and construction method for the GFRA were similar to those for the general HMA. The lab performances of the field samples were relatively compared through the mechanical measures from the Marshall stability, indirect tensile strength, and dynamic stability. The field performance was surveyed after a year. RESULTS : The lab tests verified the superior lab performances of the GFRA compared to the general HMA. The Marshall stability of the GFRA increased for about 128% of the general HMA. The indirect tensile strength of the GFRA was 115% greater than that of the general HMA. The dynamic stability of the GFRA resulted in 16,180 reps/mm, which indicated that high rut resistance may be expected. No noticeable defects, such as cracks or deformation, were observed for the GFRA sections after a year. CONCLUSIONS : The lab tests and field survey for the five GFRA sites resulted in superior performances compared to the general HMA. The relatively low-cost GFRA, which required no pre-processing procedures, such as polymer modification, may be a promising alternative to the polymer-modified asphalt mixtures. The long-term performance will be verified by the superior field durability of the GFRA in the near future.

Cone Resistivity Penetrometer for Detecting Thin-Layered Soils (협재층 탐지를 위한 선단비저항 콘)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Kim, Rae-Hyun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.8
    • /
    • pp.15-25
    • /
    • 2010
  • The thin-layered sand seam in clay affects the soil behavior. Although the standard cone penetrometer (A: $10cm^2$) have been used to evaluate the thin-layered soil, the smaller diameter cone penetrometer have been commonly recommended because of the high resolution. The purpose of this study is the development and application of the Cone Resistivity Penetrometer (CRP), which detects qc, fs, and electrical resistivity at cone tip for the evaluation of thin layered soils. Two sizes of the CRP are developed for the laboratory and field test. The projected areas of CRP for the laboratory and field tests are $0.78cm^2$ (d: 1.0 cm) and $1.76cm^2$ (d: 1.5 cm), repectively. The length of friction sleeve is designed in consideration of ratio of the projected area to the friction sleeve area. The application tests are carried out by using the artificially prepared thin-layered soils in the laboratory. In addition, the field tests are conducted at the depth of 6 to 15 m in Kwangyang. In the laboratory test, the measured electrical resistivity and cone tip resistance detect the soil layers. Moreover, in the field test the CRP investigates the three thin-layered soils. This study suggests that the CRP may be a useful tool for detecting thin-layered in soft soils.

Estimation of Undrained Shear Strength of Clay under Failed Slope (사면파괴 하부 점토지반 비배수강도의 평가)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5572-5577
    • /
    • 2012
  • Results of in-situ test, laboratory test and strength prediction method for the soft soil underlain by failed road embankment were compared each other. Comparing cone penetration test results with the field vane test results it can be seen that cone factor is 12. Undrained shear strengths determined from the cone factor which was predicted by prediction equation were smaller than those obtained from field vane tests. Among the prediction methods Jamiolkowsky's method gave close strengths to the measured undrained shear strengths by field vane tests and strength ratio were 0.88~1.23.

The Effect of Pressurized Hydrogen on the Aging and Partial Discharge Activity in Generator Winding Insulations (가압 수소가 발전기 고정자 권선 절연 열화와 부분 방전 특성에 미치는 영향)

  • 김진봉
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.100-107
    • /
    • 1999
  • The purpose of the study is to investigate the effect of H$_2$ pressure on partial discharge (PD) activity and aging rate in turbine generator winding insulations. A series of field tests and laboratory tests were peformed to investigate the effect of $H_2$ pressure on PD activity. Field tests were conducted at two unit turbine generators in two conditions, in $H_2$ pressure and in air atmosphere. Obtained results are as follows ; 1) ${\Delta}tan{\delta}$ and maximum partial discharge are reduced with increase of $H_2$ pressure and partial discharge inception voltage. 2) The reduction ratio of ${\Delta}tan{\delta}$ due to $H_2$ pressure is higher than one of PD magnitude. 3) Partial discharge pulses suffer from attenuation and distortion when transmitted along windings, because of the complex L-C network between windings. From the result, partial discharge pulses are subjected to resonance phenomena in a generator winding.

  • PDF

Severe acid rain simulation using geotechnical experimental tests with mathematical modeling

  • Raheem, Aram M.;Ali, Shno M.
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.549-565
    • /
    • 2022
  • Severe acid rains can be a major source for geotechnical and environmental problems in any soil depending on the acid type and concentration. Hence, this study investigates the individual severe effects of sulfuric, hydrochloric and nitric acids on the geotechnical properties of real field soil through a series of experimental laboratory tests. The laboratory program consists of experimental tests such as consistency, compaction, unconfined compression, pH determination, electrical conductivity, total dissolved salts, total suspended solids, gypsum and carbonates contents. The experimental tests have been performed on the untreated soil and individual acid treated soil for acid concentrations range of 0% to 20% by weight. In addition, a unique hyperbolic mathematical model has been used to predict significant geotechnical characteristics for acid treated soil. The plastic and liquid limits and optimum moisture content have been increased under the effect of all the used acids whereas the maximum dry density and unconfined stress-strain behavior have been decreased with increasing the acid concentrations. Moreover, the used hyperbolic mathematical model has predicted all the geotechnical characteristics very well with a very high coefficient of determination (R2) value and lowest root mean square error (RMSE) estimate.

Study on hydrodynamic performance of Heavier-than-water AUV with overlapping grid method

  • Li, Xiang;Zhao, Min;Zhao, Faming;Yuan, Qingqing;Ge, Tong
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Hydrodynamic coefficients strongly affect the dynamic performance of autonomous underwater vehicles (AUVs). A novel kind of underwater vehicle (Heavier-than-water AUV) with higher density than water is presented, which is different from conventional ones. RANS method and overlapping grids are used to simulate the flow field around the vehicle. Lifts, drags and moments of different attack and drift angles in steady state are calculated. The hydrodynamic performances and how the forces change with the attitude are analyzed according to the flow field structure. The steady-state results using overlapping grid method are compared with those of software FLUENT and wind tunnel tests. The calculation results show that the overlapping grid method can well simulate the viscous flow field around the underwater vehicle. Overlapping grid skills have also been used to figure out the planar-motion-mechanism (PMM) problem of Heavier-than-water AUV and forecast its hydrodynamic performance, verifying its effectiveness in dealing with the dynamic problems, which would be quite helpful for design and control of Heavier-than-water AUV and other underwater vehicles.

A Numerical Analysis of Hydraulic Hammer Compaction (유압식 햄머다짐의 수치해석적 연구)

  • 박인준;박양수;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.183-190
    • /
    • 2000
  • Effective range of Hydraulic Hammer Compaction was studied by numerical analysis instead of empirical method. Numerical analyses were carried out with commercial FEM code, ABAQUS, and verified by comparing the numerical results with field tests of Hydraulic Hammer Compaction. Most of material properties were evaluated by data from laboratory and in-situ tests. Vertical effective range was estimated by distribution curve of plastic strain energy dissipated through soil layers under dynamic load and these results were in good agreement with field tests. Based on verification, the effects of governing properties of Hydraulic Hammer Compaction such as number of hit can be determined by numerical analyses. In addition, vertical effective range can also be determined by Menard's empirical equation using the external work at converging time of plastic strain energy in numerical analysis. This implies that the minimum energy of Hydraulic Hammer Compaction for improvement can be determined by Menard's equation.

  • PDF