The purpose of this study is to develop rail rockfall and landslide information system to manage spatial database using GIS. For this, a spatial database containing information such as railroad, map, topographic analysis, meteorological data, and rockfall has been constructed for 2.5 km or 5 km buffer zone from the Kyungchun, Youngdong, Jungang, Taebak and Jungsun Rairoad where risk of landslide occurrence potential is high. For management of the spatial database, railroad rockfall and landslide information system has been developed. The information system consists of view, table, chart, layout and project environment. The functions provided in the system are data conversion, editing, labeling, zoom in and out, map making, graphic editing, text DB management, charting, on-line help as well as input, retrieve and output of spatial database. The system was developed using ArcView script language Avenue, and consisted of pull-down menus and icons for easy use. The spatial database and the information system can be used to rockfall and landslide management and analysis near the railroad as basic data and tool.
KIPS Transactions on Software and Data Engineering
/
v.8
no.1
/
pp.19-26
/
2019
In this paper, the classification performance of learning algorithms is compared for TAB digit recognition. The TAB digits that are segmented from TAB musical notes contain TAB lines and musical symbols. The labeling method and non-linear filter are designed and applied to extract fret digits only. The shift operation of the 4 directions is applied to generate more data. The selected models are Bayesian classifier, support vector machine, prototype based learning, multi-layer perceptron, and convolutional neural network. The result shows that the mean accuracy of the Bayesian classifier is about 85.0% while that of the others reaches more than 99.0%. In addition, the convolutional neural network outperforms the others in terms of generalization and the step of the data preprocessing.
The natural gas (NG), mostly methane leaks into the air, it is a big problem for the climate. detected NG leaks under U.S. city streets and collected data. In this paper, we introduced a Deep Neural Network (DNN) classification of prediction for a level of NS leak. The proposed method is OrdinalEncoder(OE) based K-means clustering and Multilayer Perceptron(MLP) for predicting NG leak. The 15 features are the input neurons and the using backpropagation. In this paper, we propose the OE method for labeling target data using k-means clustering and compared normalization methods performance for NG leak prediction. There five normalization methods used. We have shown that our proposed OE based MLP method is accuracy 97.7%, F1-score 96.4%, which is relatively higher than the other methods. The system has implemented SPSS and Python, including its performance, is tested on real open data.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.6
/
pp.700-705
/
2020
Generative adversarial networks are methods of generating images by opposing two neural networks. When generating the image, randomly generated noise is rearranged to generate the image. The image generated by this method is not generated well depending on the noise, and it is difficult to generate a proper image when the number of pixels of the image is small In addition, the speed and size of data accumulation in data classification increases, and there are many difficulties in labeling them. In this paper, to solve this problem, we propose a technique to generate noise based on random noise using real data. Since the proposed system generates an image based on the existing image, it is confirmed that it is possible to generate a more natural image, and if it is used for learning, it shows a higher hit rate than the existing method using the hostile neural network respectively.
Jeong, Young-Joon;Lee, Jong-Hyuk;Lee, Sang-Ik;Oh, Bu-Yeong;Ahmed, Fawzy;Seo, Byung-Hun;Kim, Dong-Su;Seo, Ye-Jin;Choi, Won
Journal of The Korean Society of Agricultural Engineers
/
v.64
no.1
/
pp.15-26
/
2022
3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.
Ji, Moon-Se;Ki, Heajeong;Ki, Chang-Min;Moon, Beom-Seob;Park, Sung-Geon
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.12
/
pp.1762-1769
/
2021
The final goal of this study is to develop a system that can analyze whether a wanted vehicle is a criminal vehicle from images collected from black boxes, smartphones, CCTVs, and so on. Data collection was collected using a self-developed black box. The used data in this study has used a total of 83,753 cases such as the eight vehicle types(truck, RV, passenger car, van, SUV, bus, sports car, electric vehicle) and 434 vehicle models. As a result of vehicle recognition using YOLO v5, mAP was found to be 80%. As a result of identifying the vehicle model with ReXNet using the self-developed black box, the accuracy was found to be 99%. The result was verified by surveying field police officers. These results suggest that improving the accuracy of data labeling helps to improve vehicle recognition performance.
Ha, Sang-Hyun;Jeong, Seok Chan;Jeon, Young-Joon;Jang, Mun-Seok
Journal of the Korean Society of Industry Convergence
/
v.24
no.6_2
/
pp.699-706
/
2021
Existing license plate recognition system is used as an optical character recognition method, but a method of using deep learning has been proposed in recent studies because it has problems with image quality and Korean misrecognition. This requires a lot of data collection, but the collection of license plates is not easy to collect due to the problem of the Personal Information Protection Act, and labeling work to designate the location of individual license plates is required, but it also requires a lot of time. Therefore, in this paper, to solve this problem, five types of license plates were created using a virtual Korean license plate generation program according to the notice of the Ministry of Land, Infrastructure and Transport. And the generated license plate is synthesized in the license plate part of collectable vehicle images to construct 10,147 learning data to be used in deep learning. The learning data classifies license plates, Korean, and numbers into individual classes and learn using YOLOv5. Since the proposed method recognizes letters and numbers individually, if the font does not change, it can be recognized even if the license plate standard changes or the number of characters increases. As a result of the experiment, an accuracy of 96.82% was obtained, and it can be applied not only to the learned license plate but also to new types of license plates such as new license plates and eco-friendly license plates.
Journal of the Korea Society of Computer and Information
/
v.27
no.2
/
pp.81-89
/
2022
This study aims to analyze the images of Instagram posts and to draw implcations regarding the exhibition of . This study collects and crawl 24,295 images from Instagram posts as a dataset. We use the Google Cloud Vision API for labeling the images and a total of 212,567 clusters of labels are finally classified into 9 categories using Word2Vec. The categories of museum spaces, photo zone, architecture category are dominant along with people category. In conclusion, visitors curate their experiences and memories of physical places and spaces while they are experiencing with the exhibition. This result reproves the results of previous studies which emphasize a sense of social presence and place making. The convergent approach of art management and art technology used in this study help museum professionals have an insight on big data based visitor research on a practical level.
Objectives: The total population of Korea began to decline in 2019; in particular, the population in rural areas has been rapidly decreasing and is aging. Therefore, the government has designated depopulation areas and is seeking ways to support them. To assess whether health disparities exist between areas with population decline and those without, this study used community health survey data to observe temporal changes in health behaviors between the two types of areas. Methods: The analysis used Community Health Survey data from 2010 to 2019, and regional classification was divided by depopulation areas designated by the Ministry of the Interior and Safety. Trends in health behavior and chronic disease prevalence between depopulation and non-depopulation areas were analyzed. All analyses were conducted using complex sample analysis procedures in SAS 9.4 software. Results: The smoking rate steadily decreased in both depopulation and non-depopulation areas, whereas the high-risk drinking rate increased slightly. The walking practice rate did not improve in depopulation areas compared to non-depopulation areas. Furthermore, nutritional labeling usage rate was consistently lower in depopulation areas than in non-depopulation areas, with the gap being the largest. The prevalence of obesity, diabetes, and hypertension showed that the gap between depopulation and non-depopulation areas is continuously increasing. Conclusions: Health behaviors in depopulation areas have not improved, and the prevalence of chronic diseases is increasing rapidly. Therefore, the demand for health care services that support healthy lifestyle practices and chronic disease management in these areas is expected to increase.
Proceedings of the Korean Society for Bioinformatics Conference
/
2005.09a
/
pp.51-56
/
2005
There are many sources of systematic variations in cDNA microarray experiments which affect the measured gene expression levels like differences in labeling efficiency between the two fluorescent dyes. Print-tip lowess normalization is used in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. However, print-tip lowess normalization performs poorly in situation where error variability for each gene is heterogeneous over intensity ranges. We proposed the new print-tip normalization methods based on support vector machine regression(SVMR) and support vector machine quantile regression(SVMQR). SVMQR was derived by employing the basic principle of support vector machine (SVM) for the estimation of the linear and nonlinear quantile regressions. We applied our proposed methods to previous cDNA micro array data of apolipoprotein-AI-knockout (apoAI-KO) mice, diet-induced obese mice, and genistein-fed obese mice. From our statistical analysis, we found that the proposed methods perform better than the existing print-tip lowess normalization method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.