• Title/Summary/Keyword: labeling data

Search Result 478, Processing Time 0.026 seconds

A Screening Method to Identify Potential Endocrine Disruptors Using Chemical Toxicity Big Data and a Deep Learning Model with a Focus on Cleaning and Laundry Products (화학물질 독성 빅데이터와 심층학습 모델을 활용한 내분비계 장애물질 선별 방법-세정제품과 세탁제품을 중심으로)

  • Lee, Inhye;Lee, Sujin;Ji, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.462-471
    • /
    • 2021
  • Background: The number of synthesized chemicals has rapidly increased over the past decade. For many chemicals, there is a lack of information on toxicity. With the current movement toward reducing animal testing, the use of toxicity big data and deep learning could be a promising tool to screen potential toxicants. Objectives: This study identified potential chemicals related to reproductive and estrogen receptor (ER)-mediated toxicities for 1135 cleaning products and 886 laundry products. Methods: We listed chemicals contained in cleaning and laundry products from a publicly available database. Then, chemicals that potentially exhibited reproductive and ER-mediated toxicities were identified using the European Union Classification, Labeling and Packaging classification and ToxCast database, respectively. For chemicals absent from the ToxCast database, ER activity was predicted using deep learning models. Results: Among the 783 listed chemicals, there were 53 with potential reproductive toxicity and 310 with potential ER-mediated toxicity. Among the 473 chemicals not tested with ToxCast assays, deep learning models indicated that 42 chemicals exhibited ER-mediated toxicity. A total of 13 chemicals were identified as causing reproductive toxicity by reacting with the ER. Conclusions: We demonstrated a screening method to identify potential chemicals related to reproductive and ER-mediated toxicities utilizing chemical toxicity big data and deep learning. Integrating toxicity data from in vivo, in vitro, and deep learning models may contribute to screening chemicals in consumer products.

Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images (YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.381-392
    • /
    • 2021
  • In this study, we perform deep learning-based object detection analysis on eight types of buildings defined by the digital map topography standard code, leveraging images taken with UAV (Unmanned Aerial Vehicle). Image labeling was done for 509 images taken by UAVs and the YOLO (You Only Look Once) v5 model was applied to proceed with learning and inference. For experiments and analysis, data were analyzed by applying an open source-based analysis platform and algorithm, and as a result of the analysis, building objects were detected with a prediction probability of 88% to 98%. In addition, the learning method and model construction method necessary for the high accuracy of building object detection in the process of constructing and repetitive learning of training data were analyzed, and a method of applying the learned model to other images was sought. Through this study, a model in which high-efficiency deep neural networks and spatial information data are fused will be proposed, and the fusion of spatial information data and deep learning technology will provide a lot of help in improving the efficiency, analysis and prediction of spatial information data construction in the future.

Analysis of deep learning-based deep clustering method (딥러닝 기반의 딥 클러스터링 방법에 대한 분석)

  • Hyun Kwon;Jun Lee
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.61-70
    • /
    • 2023
  • Clustering is an unsupervised learning method that involves grouping data based on features such as distance metrics, using data without known labels or ground truth values. This method has the advantage of being applicable to various types of data, including images, text, and audio, without the need for labeling. Traditional clustering techniques involve applying dimensionality reduction methods or extracting specific features to perform clustering. However, with the advancement of deep learning models, research on deep clustering techniques using techniques such as autoencoders and generative adversarial networks, which represent input data as latent vectors, has emerged. In this study, we propose a deep clustering technique based on deep learning. In this approach, we use an autoencoder to transform the input data into latent vectors, and then construct a vector space according to the cluster structure and perform k-means clustering. We conducted experiments using the MNIST and Fashion-MNIST datasets in the PyTorch machine learning library as the experimental environment. The model used is a convolutional neural network-based autoencoder model. The experimental results show an accuracy of 89.42% for MNIST and 56.64% for Fashion-MNIST when k is set to 10.

An Recognition and Acquisition method of Distance Information in Direction Signs for Vehicle Location (차량의 위치 파악을 위한 도로안내표지판 인식과 거리정보 습득 방법)

  • Kim, Hyun-Tae;Jeong, Jin-Seong;Jang, Young-Min;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.70-79
    • /
    • 2017
  • This study proposes a method to quickly and accurately acquire distance information on direction signs. The proposed method is composed of the recognition of the sign, pre-processing to facilitate the acquisition of the road sign distance, and the acquisition of the distance data. The road sign recognition uses color detection including gamma correction in order to mitigate various noise issues. In order to facilitate the acquisition of distance data, this study applied tilt correction using linear factors, and resolution correction using Fourier transform. To acquire the distance data, morphological operation was used to highlight the area, along with labeling and template matching. By acquiring the distance information on the direction sign through such a processes, the proposed system can be output the distance remaining to the next junction. As a result, when the proposed method is applied to system it can process the data in real-time using the fast calculation speed, average speed was shown to be 0.46 second per frame, with accuracy of 0.65 in similarity value.

Development of Interactive Content Services through an Intelligent IoT Mirror System (지능형 IoT 미러 시스템을 활용한 인터랙티브 콘텐츠 서비스 구현)

  • Jung, Wonseok;Seo, Jeongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.472-477
    • /
    • 2018
  • In this paper, we develop interactive content services for preventing depression of users through an intelligent Internet of Things(IoT) mirror system. For interactive content services, an IoT mirror device measures attention and meditation data from an EEG headset device and also measures facial expression data such as "sad", "angery", "disgust", "neutral", " happy", and "surprise" classified by a multi-layer perceptron algorithm through an webcam. Then, it sends the measured data to an oneM2M-compliant IoT server. Based on the collected data in the IoT server, a machine learning model is built to classify three levels of depression (RED, YELLOW, and GREEN) given by a proposed merge labeling method. It was verified that the k-nearest neighbor (k-NN) model could achieve about 93% of accuracy by experimental results. In addition, according to the classified level, a social network service agent sent a corresponding alert message to the family, friends and social workers. Thus, we were able to provide an interactive content service between users and caregivers.

Schemes for Managing Semantic Web Data in Ubiquitous Environment (유비쿼터스 환경을 고려한 시맨틱 웹 데이터 관리 기법 연구)

  • Kim, Youn-Hee;Kim, Jee-Hyun
    • Journal of Digital Contents Society
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • One important issue to generalize the ubiquitous paradigm is the development of user-centralized and intelligent ubiquitous computing systems. Sharing knowledge and correct communication between users and devices are needed to be aware of continuous changed context information and infer services for which users are suited. The goal of this paper is to describe and manage effectively the meaning of services or data which each device offers for interaction between users and devices based on semantic relationships and reasoning. In this paper, we represent semantic data using OWL and design a ubiquitous based intelligent system. We propose some index structures and strategies to process queries classified by each subsystem and adopt labeling schemes to identify classes and resources in the semantic data. We can find devices which satisfies various user's requests exactly and quickly using the proposed strategies.

  • PDF

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.

Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation (콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발)

  • Nam, Woo-Suk;Jung, Hyunjun;Park, Kyung-Han;Kim, Cheol-Min;Kim, Gyu-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members.

Database Generation and Management System for Small-pixelized Airborne Target Recognition (미소 픽셀을 갖는 비행 객체 인식을 위한 데이터베이스 구축 및 관리시스템 연구)

  • Lee, Hoseop;Shin, Heemin;Shim, David Hyunchul;Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.70-77
    • /
    • 2022
  • This paper proposes database generation and management system for small-pixelized airborne target recognition. The proposed system has five main features: 1) image extraction from in-flight test video frames, 2) automatic image archiving, 3) image data labeling and Meta data annotation, 4) virtual image data generation based on color channel convert conversion and seamless cloning and 5) HOG/LBP-based tiny-pixelized target augmented image data. The proposed framework is Python-based PyQt5 and has an interface that includes OpenCV. Using video files collected from flight tests, an image dataset for airborne target recognition on generates by using the proposed system and system input.

Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems (산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구)

  • JUN, SANGSO;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.691-708
    • /
    • 2022
  • As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.