The Journal of The Korea Institute of Intelligent Transport Systems
/
v.16
no.6
/
pp.90-100
/
2017
The purpose of this study is to detect and label the vehicles using the drone images as a way to overcome the limitation of the existing point and section detection system and vehicle gap estimation on Arterial road. In order to select the appropriate time zone, position, and altitude for the acquisition of the drone image data, the final image data was acquired by shooting under various conditions. The vehicle was detected by applying mixed Gaussian, image binarization and morphology among various image analysis techniques, and the vehicle was labeled by applying Kalman filter. As a result of the labeling rate analysis, it was confirmed that the vehicle labeling rate is 65% by detecting 185 out of 285 vehicles. The gap was calculated by pixel unitization, and the results were verified through comparison and analysis with Daum maps. As a result, the gap error was less than 5m and the mean error was 1.67m with the preceding vehicle and 1.1m with the following vehicle. The gaps estimated in this study can be used as the density of the urban roads and the criteria for judging the service level.
Developing a high-performance Semantic Role Labeling (SRL) system for a domain requires manually annotated training data of large size in the same domain. However, such SRL training data of sufficient size is available only for a few domains. Performances of Korean SRL are degraded by almost 15% or more, when it is directly applied to another domain with relatively small training data. This paper proposes two techniques to minimize performance degradation in the domain transfer. First, a domain adaptation algorithm for Korean SRL is proposed which is based on the prior model that is one of domain adaptation paradigms. Secondly, we proposed to use simplified features related to morphological and syntactic tags, when using small-sized target domain data to suppress the problem of data sparseness. Other domain adaptation techniques were experimentally compared to our techniques in this paper, where news and Wikipedia were used as the sources and target domains, respectively. It was observed that the highest performance is achieved when our two techniques were applied together. In our system's performance, F1 score of 64.3% was considered to be 2.4~3.1% higher than the methods from other research.
Recently, deep learning-based automated systems for identifying and detecting landmarks have been proposed. In order to train such a deep learning-based model without overfitting, a large amount of image and labeling data is required. Conventionally, an experienced reader manually identifies and labels landmarks in a patient's image. However, such measurement is not only expensive, but also has poor reproducibility, so the need for an automated labeling method has been raised. In addition, in the X-ray image, since various human tissues on the path through which the photons pass are displayed, it is difficult to identify the landmark compared to a general natural image or a 3D image modality image. In this study, we propose a geometric data augmentation technique that enables the generation of a large amount of labeling data in X-ray images. In addition, the optimal attention mechanism for landmark detection was presented through the implementation and application of various attention techniques to improve the detection performance of 16 major landmarks in the skull. Finally, among the major cranial landmarks, markers that ensure stable detection are derived, and these markers are expected to have high clinical application potential.
Kim, Tae-Hoon;Gu, Hyeong-Mo;Hong, Soon-Min;Choo, Seoung-Yeon
Journal of KIBIM
/
v.13
no.4
/
pp.96-105
/
2023
This study focuses on developing a building object recognition technology for efficient use in the remodeling of buildings constructed without drawings. In the era of the 4th industrial revolution, smart technologies are being developed. This research contributes to the architectural field by introducing a deep learning-based method for automatic object classification and recognition, utilizing point cloud data. We use a TD3D network with voxels, optimizing its performance through adjustments in voxel size and number of blocks. This technology enables the classification of building objects such as walls, floors, and roofs from 3D scanning data, labeling them in polygonal forms to minimize boundary ambiguities. However, challenges in object boundary classifications were observed. The model facilitates the automatic classification of non-building objects, thereby reducing manual effort in data matching processes. It also distinguishes between elements to be demolished or retained during remodeling. The study minimized data set loss space by labeling using the extremities of the x, y, and z coordinates. The research aims to enhance the efficiency of building object classification and improve the quality of architectural plans by reducing manpower and time during remodeling. The study aligns with its goal of developing an efficient classification technology. Future work can extend to creating classified objects using parametric tools with polygon-labeled datasets, offering meaningful numerical analysis for remodeling processes. Continued research in this direction is anticipated to significantly advance the efficiency of building remodeling techniques.
Young-Geun Kim;Seung-Hyeon Kim;Jung-Kon Kim;Won-Jung Kim
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.1
/
pp.189-196
/
2024
Frequent false positives alarm from the Intelligent Selective Control System have raised significant concerns. These persistent issues have led to declines in operational efficiency and market credibility among agents. Developing a new model or replacing the existing one to mitigate false positives alarm entails substantial opportunity costs; hence, improving the quality of the training dataset is pragmatic. However, smaller organizations face challenges with inadequate capabilities in dataset collection and refinement. This paper proposes an automatic human pose data collection system centered around a human pose estimation model, utilizing camera-based sensor fusion techniques and edge devices. The system facilitates the direct collection and real-time processing of field data at the network periphery, distributing the computational load that typically centralizes. Additionally, by directly labeling field data, it aids in constructing new training datasets.
The purpose of this study was to investigate current garment sizes of women's formal jackets, targeting plus-size women in online shopping malls, and to identify effective size information involved in online apparel purchase behaviors to overcome the short comings of current garment sizes from the perspectives of consumers. Basic 88 size formal jackets from the seven companies found on the 22 websites were collected and analyzed. The data were collected from March to October 2007, and analyzed using SPSS 14.0. The results were summarized as follows. First, there was no website using standard garment size labeling with 'bust-hip-height' set up by KS K 0051 among the 22 websites. Instead, all 22 websites used garment size labeling with figures such as 88, 99, 100, 110, and 120 or with letters such as L, XL, and XXL. The websites presented no body size, but listed garment size. Furthermore, the size information was presented differently, ranging from three items of bust circumference, upper arm length, and jacket length to six items of shoulder width, bust circumference, waist circumference, sleeve width, sleeve length, and jacket length. In addition, no website presented basic information for hip circumference, despite the jacket length covering the hips. Second, a total of 85.7% the websites listed bust circumferences in 88 garment sizes collected as 100cm. Shoulder widths were presented as 39cm or 37cm. Sleeve circumferences were addressed the same, 36cm, in all websites. Third, comparing the differences between guidance sizes and measurement sizes, only 28.5% of the web sites posted guidance sizes of shoulder widths the same as those of the measurement sizes. All web sites presented guidance sizes of bust circumstances as 1 to 5cm smaller than those of the measurement sizes.
Seul Bi Lee;Seunghyun Lee;Yeon Jin Cho;Young Hun Choi;Jung-Eun Cheon;Woo Sun Kim
Korean Journal of Radiology
/
v.22
no.9
/
pp.1537-1546
/
2021
Objective: To assess the role of arterial spin-labeling (ASL) perfusion MRI in identifying cerebral perfusion changes after indirect revascularization in children with moyamoya disease. Materials and Methods: We included pre- and postoperative perfusion MRI data of 30 children with moyamoya disease (13 boys and 17 girls; mean age ± standard deviation, 6.3± 3.0 years) who underwent indirect revascularization between June 2016 and August 2017. Relative cerebral blood flow (rCBF) and qualitative perfusion scores for arterial transit time (ATT) effects were evaluated in the middle cerebral artery (MCA) territory on ASL perfusion MRI. The rCBF and relative time-to-peak (rTTP) values were also measured using dynamic susceptibility contrast (DSC) perfusion MRI. Each perfusion change on ASL and DSC perfusion MRI was analyzed using the paired t test. We analyzed the correlation between perfusion changes on ASL and DSC images using Spearman's correlation coefficient. Results: The ASL rCBF values improved at both the ganglionic and supraganglionic levels of the MCA territory after surgery (p = 0.040 and p = 0.003, respectively). The ATT perfusion scores also improved at both levels (p < 0.001 and p < 0.001, respectively). The rCBF and rTTP values on DSC MRI showed significant improvement at both levels of the MCA territory of the operated side (all p < 0.05). There was no significant correlation between the improvements in rCBF values on the two perfusion images (r = 0.195, p = 0.303); however, there was a correlation between the change in perfusion scores on ASL and rTTP on DSC MRI (r = 0.701, p < 0.001). Conclusion: Recognizing the effects of ATT on ASL perfusion MRI may help monitor cerebral perfusion changes and complement quantitative rCBF assessment using ASL perfusion MRI in patients with moyamoya disease after indirect revascularization.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.14
no.4
/
pp.313-321
/
2014
In the current era of data-intensive services, the handling of big data is a crucial issue that affects almost every discipline and industry. In this study, we propose a classification method for large volumes of numeric data, which is implemented in a distributed programming framework, i.e., MapReduce. The proposed method partitions the data space into a grid structure and it then models the probability distributions of classes for grid cells by collecting sufficient statistics using distributed MapReduce tasks. The class labeling of new data is achieved by k-nearest neighbor classification based on Bayesian inference.
IEIE Transactions on Smart Processing and Computing
/
v.5
no.3
/
pp.199-206
/
2016
This paper describes a simple routing control system. We propose achieving high-speed data transmission without modifying the data frame configuration. To add a routing control signal, called the "labeling signal" in this paper, to the data frame, we use a frequency modulation technique on the transmitted frame. This means you need not change the data frame when you transmit additional signals. Using a prototype system comprising a field-programmable gate array and discrete elements, we investigate the system performance and devise a method to achieve high resolution. A three-channel routing control for a 10 Gb/s data frame was achieved, which confirms the advantages of the proposed system.
This study was to determine the effect of $Al^{3+}$ in $^{99m}Tc$ eluate from $^{99}Mo-^{99m}Tc$ generator on labeling efficiency and biodistribution of $^{99m}Tc$-MDP. The chromatographic analysis of $^{99m}Tc$-MDP preparations containing $Al^{3+}(0-62.5{\mu}g/ml)$ showed decreased labeling efficiency $^{99m}Tc$ pertechnetate and hydrolyzed reduced $^{99m}Tc$ fraction increased with increasing concentrations of aluminum. However, the chromatography system could not discern between hydrolyzed reduced $^{99m}Tc$ and $^{99m}Tc$ labeled colloid. $^{99m}Tc$-MDP preparations containing aluminum were relatively stable. Chromatographic analysis also confirmed that no significant differences were observed in the radiochemical purity of the filtered and the unfiltered $^{99m}Tc$-MDP preparations containing aluminum by $0.22{\mu}m$ syringe filter. In biodistribution data of ICR-mice, blood and heart uptake were increasing with increasing concentrations of aluminum, because of decreasing labeling efficiency of $^{99m}Tc$-MDP and increasing of $^{99m}Tc$ pertechnetate. However, liver and bone uptake were not significantly increased. In rat images no difference were observed at $5{\mu}g/ml\;Al^{3+}$ compare with at $0{\mu}g/ml\;Al^{3+}$, but at $10{\mu}g/ml\;Al^{3+}$ lumbar uptake was increased. As a practical conclusion, a concentration below $10{\mu}g/ml\;Al^{3+}$($10{\mu}g/ml\;Al^{3+}$ is the maximum allowed in pertechnetate eluate from $^{99}Mo-^{99m}Tc$ generator by USP.) in $^{99m}Tc$-MDP radiopharmaceutical result in low labeling efficiency. Radiochemical purity 90% of $^{99m}Tc$-MDP is the minimum allowed by USP. Therefore, when soft tissue uptake is observed in $^{99m}Tc$-MDP bone scan and labeling efficiency is above 90%, we can expect that $Al^{3+}$ in pertechnetated eluate is not the cause of soft tissue uptake.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.