• Title/Summary/Keyword: l2-norm

Search Result 219, Processing Time 0.024 seconds

An Efficient Implementation of Hybrid $l^1/l^2$ Norm IRLS Method as a Robust Inversion (강인한 역산으로서의 하이브리드 $l^1/l^2$ norm IRLS 방법의 효율적 구현기법)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.124-130
    • /
    • 2007
  • Least squares ($l^2$ norm) solutions of seismic inversion tend to be very sensitive to data points with large errors. The $l^1$ norm minimization gives more robust solutions, but usually with higher computational cost. Iteratively reweighted least squares (IRLS) method gives efficient approximate solutions of these $l^1$ norm problems. I propose an efficient implementation of the IRLS method for a hybrid $l^1/l^2$ minimization problem that behaves as $l^2$ norm fit for small residual and $l^1$ norm fit for large residuals. The proposed algorithm shows more robust characteristics to the decision of the threshold value than the l1 norm IRLS inversion does with respect to the threshold value to avoid singularity.

THE $L_2$ NORM OF B$\acute{E}$ZIER CURVES

  • BYUNG-GOOK LEE
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.245-252
    • /
    • 1996
  • We described a relationship of the $L_2$ norm of the $L_2$norm of a Bzier curve and l2 norm of its confrol points. The use of Bezier curves finds much application in the general description of curves and surfaces and provided the mathematical basis for many computer graphics system. We define the $L_2$ norm for Bezier curves and find a upper and lower bound for many computer graphics system. We define the $L_2$ norm for Bezier curves and find a upper and lower bound for the $L_2$ norm with respect to the $L_2$ norm for its control points for easy computation.

A Mixed Norm Image Restoration Algorithm Using Multi Regularization Parameters (다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식)

  • Choi, Kwon-Yul;Kim, Myoung-Jin;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1073-1078
    • /
    • 2007
  • In this paper, we propose an iterative mixed norm image restoration algorithm using multi regularization parameters. A functional which combines the regularized $l_2$ norm functional and the regularized $l_4$ norm functional is proposed to efficiently remove arbitrary noise. The smoothness of each functional is determined by the regularization parameters. Also, a regularization parameter is used to determine the relative importance between the regularized $l_2$ norm functional and the regularized $l_4$ norm functional using kurtosis. An iterative algorithm is utilized for obtaining a solution and its convergence is analyzed. Experimental results demonstrate the capability of the proposed algorithm.

Development of Digital Image Forgery Detection Method Utilizing LE(Local Effect) Operator based on L0 Norm (L0 Norm 기반의 LE(Local Effect) 연산자를 이용한 디지털 이미지 위변조 검출 기술 개발)

  • Choi, YongSoo
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Digital image forgery detection is one of very important fields in the field of digital forensics. As the forged images change naturally through the advancement of technology, it has made it difficult to detect forged images. In this paper, we use passive forgery detection for copy paste forgery in digital images. In addition, it detects copy-paste forgery using the L0 Norm-based LE operator, and compares the detection accuracy with the forgery detection using the existing L2, L1 Norm-based LE operator. In comparison of detection rates, the proposed lower triangular(Ayalneh and Choi) window was more robust to BAG mismatch detection than the conventional window filter. In addition, in the case of using the lower triangular window, the performance of image forgery detection was measured increasingly higher as the L2, L1 and L0 Norm LE operator was performed.

lp-norm regularization for impact force identification from highly incomplete measurements

  • Yanan Wang;Baijie Qiao;Jinxin Liu;Junjiang Liu;Xuefeng Chen
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.97-116
    • /
    • 2024
  • The standard l1-norm regularization is recently introduced for impact force identification, but generally underestimates the peak force. Compared to l1-norm regularization, lp-norm (0 ≤ p < 1) regularization, with a nonconvex penalty function, has some promising properties such as enforcing sparsity. In the framework of sparse regularization, if the desired solution is sparse in the time domain or other domains, the under-determined problem with fewer measurements than candidate excitations may obtain the unique solution, i.e., the sparsest solution. Considering the joint sparse structure of impact force in temporal and spatial domains, we propose a general lp-norm (0 ≤ p < 1) regularization methodology for simultaneous identification of the impact location and force time-history from highly incomplete measurements. Firstly, a nonconvex optimization model based on lp-norm penalty is developed for regularizing the highly under-determined problem of impact force identification. Secondly, an iteratively reweighed l1-norm algorithm is introduced to solve such an under-determined and unconditioned regularization model through transforming it into a series of l1-norm regularization problems. Finally, numerical simulation and experimental validation including single-source and two-source cases of impact force identification are conducted on plate structures to evaluate the performance of lp-norm (0 ≤ p < 1) regularization. Both numerical and experimental results demonstrate that the proposed lp-norm regularization method, merely using a single accelerometer, can locate the actual impacts from nine fixed candidate sources and simultaneously reconstruct the impact force time-history; compared to the state-of-the-art l1-norm regularization, lp-norm (0 ≤ p < 1) regularization procures sufficiently sparse and more accurate estimates; although the peak relative error of the identified impact force using lp-norm regularization has a decreasing tendency as p is approaching 0, the results of lp-norm regularization with 0 ≤ p ≤ 1/2 have no significant differences.

Two Dimensional Slow Feature Discriminant Analysis via L2,1 Norm Minimization for Feature Extraction

  • Gu, Xingjian;Shu, Xiangbo;Ren, Shougang;Xu, Huanliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3194-3216
    • /
    • 2018
  • Slow Feature Discriminant Analysis (SFDA) is a supervised feature extraction method inspired by biological mechanism. In this paper, a novel method called Two Dimensional Slow Feature Discriminant Analysis via $L_{2,1}$ norm minimization ($2DSFDA-L_{2,1}$) is proposed. $2DSFDA-L_{2,1}$ integrates $L_{2,1}$ norm regularization and 2D statically uncorrelated constraint to extract discriminant feature. First, $L_{2,1}$ norm regularization can promote the projection matrix row-sparsity, which makes the feature selection and subspace learning simultaneously. Second, uncorrelated features of minimum redundancy are effective for classification. We define 2D statistically uncorrelated model that each row (or column) are independent. Third, we provide a feasible solution by transforming the proposed $L_{2,1}$ nonlinear model into a linear regression type. Additionally, $2DSFDA-L_{2,1}$ is extended to a bilateral projection version called $BSFDA-L_{2,1}$. The advantage of $BSFDA-L_{2,1}$ is that an image can be represented with much less coefficients. Experimental results on three face databases demonstrate that the proposed $2DSFDA-L_{2,1}/BSFDA-L_{2,1}$ can obtain competitive performance.

A Mixed Norm Image Restoration Algorithm Using Multi Regularized Parameters (다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식)

  • 김도령;홍민철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.489-492
    • /
    • 2003
  • In this paper, we propose an iterative mixed norm image restoration algorithm using multi regularization parameters. A functional which combines the regularized l$_2$ norm functional and the regularized l$_4$ functional is proposed. The smoothness of each functional is determined by the regularization parameters. Also, a regularization parameter is used to determine the relative importance between the regularized l$_2$ functional and the regularized l$_4$ functional. An iterative algorithm is utilized for obtaining a solution and its convergence is analyzed.

  • PDF

Performance Comparison of Regularization Methods in Electrical Resistance Tomography (전기 저항 단층촬영법에서의 조정기법 성능비교)

  • Kang, Suk-In;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.226-234
    • /
    • 2016
  • Electrical resistance tomography (ERT) is an imaging technique where the internal resistivity distribution inside an object is reconstructed. The ERT image reconstruction is a highly nonlinear ill-posed problem, so regularization methods are used to achieve desired image. The reconstruction outcome is dependent on the type of regularization method employed such as l2-norm, l1-norm, and total variation regularization method. That is, use of an appropriate regularization method considering the flow characteristics is necessary to attain good reconstruction performance. Therefore, in this paper, regularization methods are tested through numerical simulations with different flow conditions and the performance is compared.

Whale Sound Reconstruction using MFCC and L2-norm Minimization (MFCC와 L2-norm 최소화를 이용한 고래소리의 재생)

  • Chong, Ui-Pil;Jeon, Seo-Yun;Hong, Jeong-Pil;Jo, Se-Hyung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.147-152
    • /
    • 2018
  • Underwater transient signals are complex, variable and nonlinear, resulting in a difficulty in accurate modeling with reference patterns. We analyze one type of underwater transient signals, in the form of whale sounds, using the MFCC(Mel-Frequency Cepstral Constant) and synthesize them from the MFCC and the weighted $L_2$-norm minimization techniques. The whales in this experiments are Humpback whales, Right whales, Blue whales, Gray whales, Minke whales. The 20th MFCC coefficients are extracted from the original signals using the MATLAB programming and reconstructed using the weighted $L_2$-norm minimization with the inverse MFCC. Finally, we could find the optimum weighted factor, 3~4 for reconstruction of whale sounds.

Norm and Numerical Radius of 2-homogeneous Polynomials on the Real Space lp2, (1 < p > ∞)

  • Kim, Sung-Guen
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.387-393
    • /
    • 2008
  • In this note, we present some inequalities for the norm and numerical radius of 2-homogeneous polynomials from the 2-dimensional real space $l_p^2$, (1 < p < $\infty$) to itself in terms of their coefficients. We also give an upper bound for n^{(k)}(l_p^2), (k = 2, 3, $\cdots$).