• Title/Summary/Keyword: l numerical analysis

Search Result 697, Processing Time 0.032 seconds

Distance between the Parallel Shield tunnel and Application (병렬 쉴드터널의 이격거리와 적용사례)

  • Kwak Chul-Hong;Kim Jae-Young;Kim Dong-Hyun;Lee Du-Hwa;Lee Seung-Bok;Kim Eung-Tae;Shim Jai-Beom
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.225-232
    • /
    • 2005
  • The construction of parallel tunnel by using the shield TBM method was increased recently. Accordingly the application and the propriety of the parallel shield TBM tunnels were studied through domestic and foreign construction cases herein. Also the behavior of tunnel structure and ground was evaluated by a numerical analysis with various ground conditions and the distance between the parallel tunnels. As a result, it was concluded that a deep investigation as well as a ground reinforcement was required with a ratio(L/D) of the distance between the parallel tunnels(L) to tunnel outer diameter(D) less than 0.5 because the Interference phenomenon was expected to occur. And the appropriateness of the application method of parallel shield TBM tunnel was validated through the 2-dimensional numerical analysis simulated the process of excavation after the ground reinforcement in the starting area of the OOO construction site with the ratio(L/D) of 0.35.

  • PDF

Correlation Analysis of Flow Characteristics Downstream of a Double Bent Pipe and Mounting Positions of Ultrasonic Flowmeter (곡관하류의 유동특성과 초음파유량계 설치위치의 상관관계 분석)

  • Lee, Dong Keun;Cho, Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1037-1046
    • /
    • 2013
  • In this study, the establishment of the criteria for accurate measurement is investigated via a statistical analysis of experimental results. The magnitude of influence on measurement errors is severely affected by the number of paths, mounting angle of sensor, straight pipe length in sequence, and Reynolds number. Three-dimensional numerical analysis has been conducted to understand the flow patterns downstream of a double bent pipe. Numerical analysis shows that the results well agreed with the experimental ones in case of a sensor mounting angle of $0^{\circ}$ and L/D = 3, 5 of $45^{\circ}$, $135^{\circ}$ in a single path. As a result, when the Reynolds number is 700,000-1,400,000, the sensor error of a single-path ultrasonic flowmeter is reduced with the mounting condition of L/D = 3, $45^{\circ}$.

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

Study on Prediction of Performance with Design Variables of Solar-Assisted Still Using Waste Heat from Diesel Generator (디젤 발전기 폐열을 활용한 태양열원 해수담수기의 설계변수에 따른 성능 예측에 관한 연구)

  • Jang, Hyun;Yi, Chung Seob;Suh, Jeong Se;Jeong, Kyoung Yul;Park, Change Dae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1061-1068
    • /
    • 2013
  • This study predicts distillate productions according to design variables by numerical analysis when the waste heat from a diesel generator is added to the solar-assisted still proposed in a previous study. Mathematical models were set up in reference to previous studies, and the amount of heat exchange from the waste heat recovery pipe was considered. To ensure the reliability of numerical analysis, the result was compared with that of a previous study and then, the distillate productions according to design variables were obtained by the analysis model. The results were found to generally be in agreement, and the increasing amount of distillate production of the still with the added waste heat was confirmed. In addition, the optimal value of the tilt angle of glass cover and the number of cells were determined by numerical analysis.

Numerical Analysis on Bearing Capacity of a Suction Bucket in Clay (수치해석을 이용한 점성토 지반에 설치된 버켓기초의 지지력 분석)

  • Le, Chi-Hung;Jeong, Jae-Uk;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.25-33
    • /
    • 2011
  • Suction buckets have been widely used for offshore structures such as anchors for floating facilities, and the foundations of offshore wind energy turbines. However, the design guidelines for suction buckets have not been clearly suggested. Therefore, this study performed the numerical analysis by using ABAQUS (2010) to evaluate bearing capacities and load-movement behaviors of the suction bucket in NC clay. For the numerical analysis, the depth ratio L/D (L=embedded length of skirt; D=diameter of a bucket) was varied from 0.25 to 1.0. The analysis results showed that the L/D ratio has a significant effect on the bearing capacity, and the vertical and horizontal capacities respectively increased by about 40% and 90%, when L/D ratio increased from 0.25 to 1.0. At the vertical loading, the bucket showed the similar failure mode with a deep foundation, so the shaft and toe resistances can be separately evaluated. At the horizontal loading, the bucket with L/D=O.25 showed the sliding failure mode and the bucket with $L/D{\geq}0.5$ showed the rotational failure mode.

Numerical analysis of tunnelling-induced ground movements (터널굴착으로 발생한 지반거동에 대한 수치해석적 분석)

  • Son, Moo-Rak;Yun, Jong-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.229-242
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement, maximum horizontal displacement and total settlement volume at the ground surface due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. In addition, the volume loss ($V_L$) at tunnel excavation face has been compared with the total surface settlement volume ($V_s$) with the variation of ground condition, tunnel depth, and tunnel diameter. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

The Comparison of Behavior by Instrumentation and Numerical Analysis on Non-Weir Concrete Dam (콘크리트댐 비월류부 수치해석과 계측결과 비교)

  • 임정열;오병현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.392-395
    • /
    • 2003
  • In this study was compared with result of instrumentation and numeral analysis of non-weir of concrete dam to prepare a plan for total safety estimation method such as reliability estimation of numerical analysis result, characteristics of dam behavior and etc. The results of instrument analysis of displacement and stress on N.H.W.L was similar to that of numeral analysis.

  • PDF

Numerical Analysis on Wire-Plate Electrostatic Precipitator Performance for Bioaerosol Capture: Effect of Ionic Wind (와이어-평판 형태의 전기집진기식 바이오-에어로졸 포집기 성능 수치해석: 이온풍의 영향)

  • Hyun Sik Choi;Gihyeon Yu;Jungho Hwang
    • Particle and aerosol research
    • /
    • v.19 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • In our previous study, a wire-plate type electrostatic precipitator (ESP) was developed to collect bioaerosols of 100 nm size. In the study, various flow rates (40 ~ 100 L/min) and applied voltages (3 ~ 10 kV) were tested for experiment. In this study, numerical analysis was performed for the ESP of the previous study with the same flow rates and applied voltages, but with varying the size of bioaerosols to 0.04 ~ 2.5 ㎛. Overall, the numerical analysis results well predicted the experimental data. Bioaerosols of 0.1 ~ 0.5 ㎛ showed the minimum collection efficiency for all conditions because of low charge number. The effect of the ionic wind generated by the corona discharge was calculated. However, the ionic wind did not affect much the collection efficiency. The aerosol collection in the ESP of this study was due to the electrostatic force generated by particle charge in the electric field. This numerical study on the ESP can be used for the design and optimization of higher flow rate (> 100 L/min) ESP.

Comparison between heavy oil combustion test and numerical analysis of combustion phenomena subject to changes in injection characteristics (분무특성에 따른 중유연소 수치해석의 결과와 실험과의 비교)

  • Lee, S.S.;Kim, H.J;Kim, J.J.;Choi, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.338-343
    • /
    • 2003
  • Computations were performed to investigate the spray characteristics of the twin fluid nozzle in three stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to estimate mean droplet size, initial velocity and spread factor of the nozzle through comparison between experiments and numerical analyses. Air stage ratio is 2:4:4 by mass, and O2 in exhaust gas is about 4 % by volume. Here, the agreement between the experiment and numerical analyses is evaluated by NOx generation. Spray characteristics will be linearly interpolated between fuel consumption rate l20L/h and 240 L/h.

  • PDF

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.