• Title/Summary/Keyword: kriging model

Search Result 331, Processing Time 0.034 seconds

Design Optimization and Analysis of a RBCC Engine Flowpath Using a Kriging Model Based Genetic Algorithm (Kriging 모델기반 유전자 알고리즘을 이용한 RBCC 엔진 유로 최적설계 및 분석)

  • Chae, Sang-Hyun;Kim, Hye-Sung;Yee, Kwan-Jung;Oh, Se-Jong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • A design optimization method is applied for the flow path design of RBCC engine, an important factor for the determining the propulsion performance operating at air-breathing mode. A design optimization was carried out to maximize the specific impulse of the RBCC engine by using a genetic algorithm based on the Kriging model. Results are analyzed using ANOVA and SOM. Design conditions of ramjet and scramjet mode are selected as Mach number 4 at 20 km altitude and Mach number 7 at 30 km, respectively. The optimized design presents that the specific impulse is increased by 7% and 10% on each condition than the baseline design.

Comparison of Ordinary Kriging and Artificial Neural Network for Estimation of Ground Profile Information in Unboring Region (미시추 구간의 지반 층상정보 예측을 위한 정규 크리깅 및 인공신경망 기법의 비교)

  • Chun, Chanjun;Choi, Changho;Cho, Jinwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.15-20
    • /
    • 2019
  • A large amount of site investigation data is essential to obtain reliable design value. However, site investigations are generally insufficient due to economic problems. It is important to estimate the ground profile information in unboring region for accurate earthwork-volume prediction, and such ground profile information can be estimated by using the geo-statistical approach. Furthermore, the ground profile information in unboring region can be estimated by training a model via machine learning technique such as artificial neural network. In this paper, artificial neural network-based model estimated the ground profile information in unboring region, and this results were compared with that of ordinary kriging technique, which is referred to the geo-statistical approach. Accordingly, a total of 84 ground profile information in an actual bridge environment was split into 75 training and 9 test databases. The observed ground profile information of the test database was compared with those of the ordinary kriging technique and artificial neural network.

Applicability Analysis of Measurement Data Classification and Spatial Interpolation to Improve IUGIM Accuracy (지하공간통합지도의 정확도 향상을 위한 계측 데이터 분류 및 공간 보간 기법 적용성 분석)

  • Lee, Sang-Yun;Song, Ki-Il;Kang, Kyung-Nam;Kim, Wooram;An, Joon-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.17-29
    • /
    • 2022
  • Recently, the interest in integrated underground geospatial information mapping (IUGIM) to ensure the safety of underground spaces and facilities has been increasing. Because IUGIM is used in the fields of underground space development and underground safety management, the up-to-dateness and accuracy of information are critical. In this study, IUGIM and field data were classified, and the accuracy of IUGIM was improved by spatial interpolation. A spatial interpolation technique was used to process borehole data in IUGIM, and a quantitative evaluation was performed with mean absolute error and root mean square error through the cross-validation of seven interpolation results according to the technique and model. From the cross-validation results, accuracy decreased in the order of nonuniform rational B-spline, Kriging, and inverse distance weighting. In the case of Kriging, the accuracy difference according to the variogram model was insignificant, and Kriging using the spherical variogram exhibited the best accuracy.

Development of Computational Orthogonal Array based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade (터빈 블레이드 형상 최적설계를 위한 전산 직교배열 기반 피로수명 예측 모델 개발)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.611-617
    • /
    • 2010
  • A complex system involves a large number of design variables, and its operation is non-linear. To explore the characteristics in its design space, a Kriging meta-model can be utilized; this model has replaced expensive computational analysis that was performed in traditional parametric design optimization. In this study, a Kriging meta-model with a computational orthogonal array for the design of experiments was developed to optimize the fatigue life of a turbine blade whose behavior under cyclic rotational loads is significantly non-linear. The results not only show that the maximum fatigue life is improved but also indicate that the accuracy of computational analysis is achieved. In addition, the robustness of the results obtained by six-sigma optimization can be verified by comparison with the results obtained by performing Monte Carlo simulations.

Sensitivity Validation Technique for Sequential Kriging Metamodel (순차적 크리깅 메타모델의 민감도 검증법)

  • Huh, Seung-Kyun;Lee, Jin-Min;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.873-879
    • /
    • 2012
  • Metamodels have been developed with a variety of design optimization techniques in the field of structural engineering over the last decade because they are efficient, show excellent prediction performance, and provide easy interconnections into design frameworks. To construct a metamodel, a sequential procedure involving steps such as the design of experiments, metamodeling techniques, and validation techniques is performed. Because validation techniques can measure the accuracy of the metamodel, the number of presampled points for an accurate kriging metamodel is decided by the validation technique in the sequential kriging metamodel. Because the interpolation model such as the kriging metamodel based on computer experiments passes through responses at presampled points, additional analyses or reconstructions of the metamodels are required to measure the accuracy of the metamodel if existing validation techniques are applied. In this study, we suggest a sensitivity validation that does not require additional analyses or reconstructions of the metamodels. Fourteen two-dimensional mathematical problems and an engineering problem are illustrated to show the feasibility of the suggested method.

Meta Model-Based Desgin Optimization of Double-Deck Train Carbody (2 층열차 차체의 meta model 기반 최적설계)

  • Hwang W.J.;Jung J.J.;Lee T.H.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • Double-deck train have studied in the next generation train in KRRI. Double-deck train have more seat capacities compared with single deck vehicles and is a efficient, reliable and comfortable alternative train. Because of heavy weight, weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. Weight minimization problem of the double-deck train car-body is required to decide 66 design variables of thicknesses for large aluminum extruded panel while satisfying stress constraints. Design variables are too many and one execution of structural analysis of double-deck train carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Metamodels such as response surface model (RSM) and kriging model are used to approximate model-based optimization is described. RSM is easy to obtain and expressed explicit function, but this is not suitable for highly nonlinear and large scaled problems. Kriging model employs an interpolation scheme and is developed in the fields of spatial statistics and geostatistics. Target of this design is to find optimum thickness of AEP to minimize weight of doulbe-deck train carbody. In this study, meta model techniques are introduced to carry out weight minimization of a double-deck train car-body.

  • PDF

A Stochastic Numerical Analysis of Groundwater Fluctuations in Hillside Slopes for Assessing Risk of Landslides (산사태 위험도 추정을 위한 지하수위 변동의 추계론적 수치 해석)

  • 이인모
    • Geotechnical Engineering
    • /
    • v.3 no.4
    • /
    • pp.41-54
    • /
    • 1987
  • A stochastic numerical analysis for predicting the groundswater fluctuations in hillside slopes is performed in this paper to account for the uncertainties associated with the rainfall and site characteristics. The effect of spatial variabilities of aquifer parameters and the effect of temporal variability of recharge on the groundwater fluctuations are studied in depth. The Kriging is used to account for the spatial tariabilities of aquifer parameters. This technique prolevides the best linear unbiased estimator of a parameter and its minimum variance from a litsitem number of measured data. A stochastic one-dimensional numerical model is delreloped b) combining the groundwater flow model, the Kriging, and the first-order second-moment analysis. In addition, a two dimensional detelministic groundwater model is developed to study the change of ground water surfas in the transverse direction as well as in the downslope direction. It is revealed that the undulations of the impervious bedrock in addition to the permeability and the specific yield have an important influence on the fluctuations of the groundwater surface. It is also found that th'e groundwater changes significantly in the transverse direction as well as in the downslope direction. The results obtained in this analysis may be used for evaluation of landslide risks due to high porewater pressure.

  • PDF

A Study on the Development of Model for Estimating the Thickness of Clay Layer of Soft Ground in the Nakdong River Estuary (낙동강 조간대 연약지반의 지역별 점성토층 두께 추정 모델 개발에 관한 연구)

  • Seongin, Ahn;Dong-Woo, Ryu
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.586-597
    • /
    • 2022
  • In this study, a model was developed for the estimating the locational thickness information of the upper clay layer to be used for the consolidation vulnerability evaluation in the Nakdong river estuary. To estimate ground layer thickness information, we developed four spatial estimation models using machine learning algorithms, which are RF (Random Forest), SVR (Support Vector Regression) and GPR (Gaussian Process Regression), and geostatistical technique such as Ordinary Kriging. Among the 4,712 borehole data in the study area collected for model development, 2,948 borehole data with an upper clay layer were used, and Pearson correlation coefficient and mean squared error were used to quantitatively evaluate the performance of the developed models. In addition, for qualitative evaluation, each model was used throughout the study area to estimate the information of the upper clay layer, and the thickness distribution characteristics of it were compared with each other.

Influence of Correlation Functions on Maximum Entropy Experimental Design (최대엔트로피 실험계획에서 상관함수의 영향)

  • Lee Tae-Hee;Kim Seung-Won;Jung Jae-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.787-793
    • /
    • 2006
  • Recently kriging model has been widely used in the DACE (Design and Analysis of Computer Experiment) because of prominent predictability of nonlinear response. Since DACE has no random or measurement errors contrast to physical experiment, space filling experimental design that distributes uniformly design points over whole design space should be employed as a sampling method. In this paper, we examine the maximum entropy experimental design that reveals the space filling strategy in which defines the maximum entropy based on Gaussian or exponential. The influence of these two correlation functions on space filling design and their model parameters are investigated. Based on the exploration of numerous numerical tests, enhanced maximum entropy design based on exponential correlation function is suggested.

A Fully Optimized Electrowinning Cell for Achieving a Uniform Current Distribution at Electrodes Utilizing Sampling-Based Sensitivity Approach

  • Choi, Nak-Sun;Kim, Dong-Wook;Cho, Jeonghun;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.641-646
    • /
    • 2015
  • In this paper, a zinc electrowinning cell is fully optimized to achieve a uniform current distribution at electrode surfaces. To effectively deal with an electromagnetically coupled problem with multi-dimensional design variables, a sampling-based sensitivity approach is combined with a highly tuned multiphysics simulation model. The model involves the interrelation between electrochemical reactions and electromagnetic phenomena so as to predict accurate current distributions in the electrowinning cell. In the sampling-based sensitivity approach, Kriging-based surrogate models are generated in a local window, and accordingly their sensitivity values are extracted. Such unique design strategy facilitates optimizing very complicated multiphysics and multi-dimensional design problems. Finally, ten design variables deciding the electrolytic cell structure are optimized, and then the uniformity of current distribution in the optimized cell is examined through the comparison with existing cell designs.