• Title/Summary/Keyword: korea concrete institute

Search Result 13,532, Processing Time 0.042 seconds

Diffusion of Chloride Ion in Antiwashout Underwater Concrete (수중불분리성 콘크리트의 염화물이온 침투저항성에 대한 고찰)

  • 김성수;김진철;김홍삼;김종필;김동현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.451-454
    • /
    • 2000
  • Recently, the antiwashout underwater concrete has been increasingly used for underwater structure such as high strength massive concrete structures. However, Concrete has poor quality ad durability due to dilution with separating cementitious material. In this study, specimens were made with antiwashout underwater concrete replaced with mineral admixtures to improve their properties and were placed in air, water, and salt water. To estimation the chloride ion permeation in concrete, ASTM C 1202 Test was performed. The experimental results demonstrate that the increase of the admixtures improved the properties of antiwashout underwater concrete.

  • PDF

The Investigation of Deteriortion of Concrete Structures due to the De-icing Salts (융빙제 사용으로 인해 열화된 콘크리트 구조물의 내구성 조사)

  • 문한영;김성수;류재석;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.77-82
    • /
    • 1996
  • The study was performed for the purpose of obtaining the fundamental data to improve the durability of concrete structures due to de-icing salts. To assume the degree of concrete deterioration, soluble chloride content in concrete, the depth of carbonation and compressive strength of core specimens were measured. The porgress of corrosion of concrete bridge was electrochemically monitored. The results show that the concrete structure was deteriorated and reinforced steel in concrete was corroded due to de-icing salts.

  • PDF

Durablity Test and Field Application of Marine Concrete (항만콘크리트의 내구실험과 현장적용)

  • 강희철;정원기;이규정;박우선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.676-681
    • /
    • 2000
  • This paper covers durability and field application of marine concrete which have been enhanced the resistance against deterioration in seawater. Fly ash concrete is applied to make the concrete with good durability. It is well known fly ash in concrete has a good performance preventing fro a sulphate attack and a steel corrosion. Several durability tests were performed to find characteristics of marine concrete which is proposed in this paper comparing with normal concrete. Field application was executed to compare results with laboratory test and to give a reliability to engineers. The project was supported by Ministry of Marine Affairs and Fisheries for two years.

  • PDF

A Study on the Properties of High Performance Concrete Using Low Heat Portland(Type IV) Cement (저열 포틀랜드(4종)시멘트를 사용한 고유동, 고강도콘크리트에 관한 연구)

  • 최광일;김기수;하재담;김동석;이순기;이동윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.422-429
    • /
    • 1997
  • In recent years, concrete construction have become larger and higher and are demanding high performance concrete with lower heat to prevent thermal cracking, far greater workability, high strength and durability. Application of low heat portland(Type IV) cement for the high performance concrete is the best solution to satisfied those requirements. Here are explained the basic properties of fresh concrete as well as hardened concrete of high performance concrete using low that portland cement.

  • PDF

Development of Lightweight Foamed Concrete Using Polymer Foam Agent and its Mechanical Properties (경량기포콘크리트의 개발과 역학적 특성에 관한 연구)

  • 변근주;박상순;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.358-365
    • /
    • 1996
  • Lightweight foamed concrete is a concrete which is lighter than normal concrete by mixing prefoamed foam in cement slurry. The objective of this study are to develop prefoamed optimal lightweight foamed concrete using polymer foam agent and to obtain its mechanical characteristics experimentally. This paper presents extensive test data on young's modulus, poisson's ratio, stress-strain curve, the characteristics of strength of the foamed concrete and also presents the mechanical characteristics of the foamed concrete according to foam sizes.

  • PDF

Application of Mass Concrete Exposed to Marine Environment (염해환경에 노출된 매스콘크리트의 시공)

  • Kim Dong Seok;Park Sang Joon;Shin Hong Chol;Yoo Jae Kang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.487-490
    • /
    • 2005
  • This study was performed to investigate the effect of ternary blended cement concrete mixed with slag cement and fly ash on the compressive strength, the resistance to chloride ion penetration and reduction of hydration heat. Each performance of ternary blended cement concrete compared with binary blended cement concrete and ordinary portland cement concrete. As a result, it was concluded that ternary blended cement concrete is suitable to mass concrete under marine environment.

  • PDF

An Experimental Study on Reinforcement Effect of FRP (FRP 보강효과에 관한 실험적 연구)

  • 김생빈;김동신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.163-168
    • /
    • 1990
  • This study shows both through experiment and based on theory the reinforcement effectiveness when using FRP(Fiber Reinforced Plastics) as a means of reinforcing the concrete of the deteriorated concrete. Non-deteriorated concrete and deteriorated concrete which is deteriorated by freezing and thawing are made three type specimens (non-reinforced) concrete beam, one layer FRP reinforced concrete beam, two layer FRP reinforced concrete beam) for this purpose. Bending strength and cracking load ratio is measured by bending test.

  • PDF

Prediction of Concrete Pumping Using Various Rheological Models

  • Choi, Myoung Sung;Kim, Young Jin;Kim, Jin Keun
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.269-278
    • /
    • 2014
  • When concrete is being transported through a pipe, the lubrication layer is formed at the interface between concrete and the pipe wall and is the major factor facilitating concrete pumping. A possible mechanism that illustrates to the formation of the layer is the shear-induced particle migration and determining the rheological parameters is a paramount factor to simulate the concrete flow in pipe. In this study, numerical simulations considering various rheological models in the shear-induced particle migration were conducted and compared with 170 m full-scale pumping tests. It was found that the multimodal viscosity model representing concrete as a three-phase suspension consisting of cement paste, sand and gravel can accurately simulate the lubrication layer. Moreover, considering the particle shape effects of concrete constituents with increased intrinsic viscosity can more exactly predict the pipe flow of pumped concrete.

Prediction of the Effective Concrete Strength for Column-Slab Connections

  • Lee, Joo-Ha;Lee, Seung-Hoon;Sohn, Yu-Shin;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.577-578
    • /
    • 2009
  • For cases where the column concrete strength exceeds 1.4 times the slab concrete strength, the KCI Code requires that either: puddled high-strength concrete(HSC) be used in the slab, or the use of vertical dowels and spirals through the joint, or the use of an effective concrete strength in the joint. This paper studies on the third strategy. A prediction model of the effective concrete strength for interior columns was proposed using an analogy of brick and mortar in brick masonry. The proposed prediction model is verified by comparison with experimental results and various design equations.

  • PDF