• 제목/요약/키워드: koBERT

검색결과 76건 처리시간 0.023초

에세이 자동 평가 모델 성능 향상을 위한 데이터 증강과 전처리 (Data Augmentation and Preprocessing to Improve Automated Essay Scoring Model)

  • 고강희;김도국
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.327-332
    • /
    • 2023
  • 데이터의 품질과 다양성은 모델 성능에 지대한 영향을 끼친다. 본 연구에서는 Topic을 활용한 데이터 전처리와 BERT 기반 MLM, T5, Random Masking을 이용한 증강으로 데이터의 품질과 다양성을 높이고자 했으며, 이를 KoBERT 기반 에세이 자동 평가 모델에 적용했다. 데이터 전처리만 진행했을 때, Quadratic Weighted Kappa Score(QWK)를 기준으로 모델이 에세이의 모든 평가 항목에 대해 베이스라인보다 더욱 높은 일치도를 보였으며 평가항목별 일치도의 평균을 기준으로 0.5368029에서 0.5483064(+0.0115035)로 상승했다. 여기에 제안하는 증강 방식을 추가 할 경우 MLM, T5, Random Masking 모두 성능 향상 효과를 보였다. 특히, MLM 데이터 증강 방식을 추가로 적용하였을 때 최종적으로 0.5483064에서 0.55151645(+0.00321005)으로 상승해 가장 높은 일치도를 보였으며, 에세이 총점으로 QWK를 기준으로 성능을 평가하면 베이스라인 대비 0.4110809에서 0.4380132(+0.0269323)로의 성능 개선이 있었다.

  • PDF

사용자 입력 문장에서 우울 관련 감정 탐지 (Detects depression-related emotions in user input sentences)

  • 오재동;오하영
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1759-1768
    • /
    • 2022
  • 본 논문은 AI Hub에서 제공하는 웰니스 대화 스크립트, 주제별 일상 대화 데이터세트와 Github에 공개된 챗봇 데이터세트를 활용하여 사용자의 발화에서 우울 관련 감정을 탐지하는 모델을 제안한다. 우울 관련 감정에는 우울감, 무기력을 비롯한 18가지 감정이 존재하며, 언어 모델에서 높은 성능을 보이는 KoBERT와 KoELECTRA 모델을 사용하여 감정 분류 작업을 수행한다. 모델별 성능 비교를 위해 우리는 데이터세트를 다양하게 구축하고, 좋은 성능을 보이는 모델에 대해 배치 크기와 학습률을 조정하면서 분류 결과를 비교한다. 더 나아가, 사람은 동시에 여러 감정을 느끼는 것을 반영하기 위해, 모델의 출력값이 특정 임계치보다 높은 레이블들을 모두 정답으로 선정함으로써, 다중 분류 작업을 수행한다. 이러한 과정을 통해 도출한 성능이 가장 좋은 모델을 Depression model이라 부르며, 이후 사용자 발화에 대해 우울 관련 감정을 분류할 때 해당 모델을 사용한다.

KoBigBird를 활용한 수능 국어 문제풀이 모델 (Korean CSAT Problem Solving with KoBigBird)

  • 박남준;김재광
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.207-210
    • /
    • 2022
  • 최근 자연어 처리 분야에서 기계학습 독해 관련 연구가 활발하게 이루어지고 있다. 그러나 그 중에서 한국어 기계독해 학습을 통해 문제풀이에 적용한 사례를 찾아보기 힘들었다. 기존 연구에서도 수능 영어와 수능 수학 문제를 인공지능(AI) 모델을 활용하여 문제풀이에 적용했던 사례는 있었지만, 수능 국어에 이를 적용하였던 사례는 존재하지 않았다. 또한, 수능 영어와 수능 수학 문제를 AI 문제풀이를 통해 도출한 결괏값이 각각 12점, 16점으로 객관식이라는 수능의 특수성을 고려했을 때 기대에 못 미치는 결과를 나타냈다. 이에 본 논문은 한국어 기계독해 데이터셋을 트랜스포머(Transformer) 기반 모델에 학습하여 수능 국어 문제 풀이에 적용하였다. 이를 위해 객관식으로 이루어진 수능 문항의 각각의 선택지들을 질문 형태로 변형하여 모델이 답을 도출해낼 수 있도록 데이터셋을 변형하였다. 또한 BERT(Bidirectional Encoder Representations from Transformer)가 가진 입력값 개수의 한계를 극복하기 위해 더 큰 입력값을 처리할 수 있는 트랜스포머 기반 모델 중에서 한국어 기계독해 학습에 적합한 KoBigBird를 사전학습모델로 설정하여 성능을 높였다.

  • PDF

KB-BERT: 금융 특화 한국어 사전학습 언어모델과 그 응용 (KB-BERT: Training and Application of Korean Pre-trained Language Model in Financial Domain)

  • 김동규;이동욱;박장원;오성우;권성준;이인용;최동원
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.191-206
    • /
    • 2022
  • 대량의 말뭉치를 비지도 방식으로 학습하여 자연어 지식을 획득할 수 있는 사전학습 언어모델(Pre-trained Language Model)은 최근 자연어 처리 모델 개발에 있어 매우 일반적인 요소이다. 하지만, 여타 기계학습 방식의 성격과 동일하게 사전학습 언어모델 또한 학습 단계에 사용된 자연어 말뭉치의 특성으로부터 영향을 받으며, 이후 사전학습 언어모델이 실제 활용되는 응용단계 태스크(Downstream task)가 적용되는 도메인에 따라 최종 모델 성능에서 큰 차이를 보인다. 이와 같은 이유로, 법률, 의료 등 다양한 분야에서 사전학습 언어모델을 최적화된 방식으로 활용하기 위해 각 도메인에 특화된 사전학습 언어모델을 학습시킬 수 있는 방법론에 관한 연구가 매우 중요한 방향으로 대두되고 있다. 본 연구에서는 금융(Finance) 도메인에서 다양한 자연어 처리 기반 서비스 개발에 활용될 수 있는 금융 특화 사전학습 언어모델의 학습 과정 및 그 응용 방식에 대해 논한다. 금융 도메인 지식을 보유한 언어모델의 사전학습을 위해 경제 뉴스, 금융 상품 설명서 등으로 구성된 금융 특화 말뭉치가 사용되었으며, 학습된 언어 모델의 금융 지식을 정량적으로 평가하기 위해 토픽 분류, 감성 분류, 질의 응답의 세 종류 자연어 처리 데이터셋에서의 모델 성능을 측정하였다. 금융 도메인 말뭉치를 기반으로 사전 학습된 KB-BERT는 KoELECTRA, KLUE-RoBERTa 등 State-of-the-art 한국어 사전학습 언어 모델과 비교하여 일반적인 언어 지식을 요구하는 범용 벤치마크 데이터셋에서 견줄 만한 성능을 보였으며, 문제 해결에 있어 금융 관련 지식을 요구하는 금융 특화 데이터셋에서는 비교대상 모델을 뛰어넘는 성능을 보였다.

딥러닝 기반의 문서요약기법을 활용한 뉴스 추천 (News Recommendation Exploiting Document Summarization based on Deep Learning)

  • 허지욱
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.23-28
    • /
    • 2022
  • 최근 스마트폰 또는 타블렛 PC와 같은 스마트기기가 정보의 창구 역할을 하게 되면서 다수의 사용자가 웹포털을 통해 웹 뉴스를 소비하는 것이 더욱 중요해졌다. 하지만 인터넷 상에 생성되는 뉴스의 양을 사용자들이 따라가기 힘들며 중복되고 반복되는 폭발하는 뉴스 기사에 오히려 혼란을 야기 시킬 수도 있다. 본 논문에서는 뉴스 포털에서 사용자의 질의로부터 검색된 뉴스후보들 중 KoBART 기반의 문서요약 기술을 활용한 뉴스 추천 시스템을 제안한다. 실험을 통해서 새롭게 수집된 뉴스 데이터를 기반으로 학습한 KoBART의 성능이 사전훈련보다 더욱 우수한 결과를 보여주었으며 KoBART로부터 생성된 요약문을 환용하여 사용자에게 효과적으로 뉴스를 추천하였다.

딥러닝을 활용한 고객 경험 기반 상품 평가 변화 예측 방법론 (A Methodology for Predicting Changes in Product Evaluation Based on Customer Experience Using Deep Learning)

  • 안지예;김남규
    • 한국IT서비스학회지
    • /
    • 제21권4호
    • /
    • pp.75-90
    • /
    • 2022
  • From the past to the present, reviews have had much influence on consumers' purchasing decisions. Companies are making various efforts, such as introducing a review incentive system to increase the number of reviews. Recently, as various types of reviews can be left, reviews have begun to be recognized as interesting new content. This way, reviews have become essential in creating loyal customers. Therefore, research and utilization of reviews are being actively conducted. Some studies analyze reviews to discover customers' needs, studies that upgrade recommendation systems using reviews, and studies that analyze consumers' emotions and attitudes through reviews. However, research that predicts the future using reviews is insufficient. This study used a dataset consisting of two reviews written in pairs with differences in usage periods. In this study, the direction of consumer product evaluation is predicted using KoBERT, which shows excellent performance in Text Deep Learning. We used 7,233 reviews collected to demonstrate the excellence of the proposed model. As a result, the proposed model using the review text and the star rating showed excellent performance compared to the baseline that follows the majority voting.

텍스트 데이터의 정보 손실을 방지하기 위한 군집화 기반 언더샘플링 기법 (A Clustering-based Undersampling Method to Prevent Information Loss from Text Data)

  • 김종휘;신사임;장진예
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.251-256
    • /
    • 2022
  • 범주 불균형은 분류 모델이 다수 범주에 편향되게 학습되어 소수 범주에 대한 분류 성능을 떨어뜨리는 문제를 야기한다. 언더 샘플링 기법은 다수 범주 데이터의 수를 줄여 소수 범주와 균형을 이루게하는 대표적인 불균형 해결 방법으로, 텍스트 도메인에서의 기존 언더 샘플링 연구에서는 단어 임베딩과 랜덤 샘플링과 같은 비교적 간단한 기법만이 적용되었다. 본 논문에서는 트랜스포머 기반 문장 임베딩과 군집화 기반 샘플링 방법을 통해 텍스트 데이터의 정보 손실을 최소화하는 언더샘플링 방법을 제안한다. 제안 방법의 검증을 위해, 감성 분석 실험에서 제안 방법과 랜덤 샘플링으로 추출한 훈련 세트로 모델을 학습하고 성능을 비교 평가하였다. 제안 방법을 활용한 모델이 랜덤 샘플링을 활용한 모델에 비해 적게는 0.2%, 많게는 2.0% 높은 분류 정확도를 보였고, 이를 통해 제안하는 군집화 기반 언더 샘플링 기법의 효과를 확인하였다.

  • PDF

LUKE 기반의 한국어 문서 검색 모델 (LUKE based Korean Dense Passage Retriever)

  • 고동률;김창완;김재은;박상현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.131-134
    • /
    • 2022
  • 자연어처리 분야 중 질의응답 태스크는 전통적으로 많은 연구가 이뤄지고 있는 분야이며, 최근 밀집 벡터를 사용한 리트리버(Dense Retriever)가 성공함에 따라 위키피디아와 같은 방대한 정보를 활용하여 답변하는 오픈 도메인 QA(Open-domain Question Answering) 연구가 활발하게 진행되고 있다. 대표적인 검색 모델인 DPR(Dense Passage Retriever)은 바이 인코더(Bi-encoder) 구조의 리트리버로서, BERT 모델 기반의 질의 인코더(Query Encoder) 및 문단 인코더(Passage Encoder)를 통해 임베딩한 벡터 간의 유사도를 비교하여 문서를 검색한다. 하지만, BERT와 같이 엔티티(Entity) 정보에 대해 추가적인 학습을 하지 않은 언어모델을 기반으로 한 리트리버는 엔티티 정보가 중요한 질문에 대한 답변 성능이 저조하다. 본 논문에서는 엔티티 중심의 질문에 대한 답변 성능 향상을 위해, 엔티티를 잘 이해할 수 있는 LUKE 모델 기반의 리트리버를 제안한다. KorQuAD 1.0 데이터셋을 활용하여 한국어 리트리버의 학습 데이터셋을 구축하고, 모델별 리트리버의 검색 성능을 비교하여 제안하는 방법의 성능 향상을 입증한다.

  • PDF

토픽 모델링 기반 비대면 강의평 분석 및 딥러닝 분류 모델 개발 (Analyzing Students' Non-face-to-face Course Evaluation by Topic Modeling and Developing Deep Learning-based Classification Model)

  • 한지영;허고은
    • 한국문헌정보학회지
    • /
    • 제55권4호
    • /
    • pp.267-291
    • /
    • 2021
  • 2020년 신종 코로나바이러스 감염증(코로나19)으로 인한 전 세계적인 팬데믹으로 교육 현장에도 큰 변화가 있었다. 대학에서는 보조 교육 수단으로 생각했던 원격수업을 전면 도입하였고 비대면 수업이 일상화되어 교수자와 학생들은 새로운 교육환경에 적응하기 위해 큰 노력을 기울이고 있다. 이러한 변화 속에서 비대면 강의의 질적 향상을 위하여 강의 만족도 영향요인에 관한 연구가 필요하다. 본 연구는 코로나 전과 후로 변화된 대학 강의 만족도 영향요인을 파악하기 위해 빅데이터를 활용한 새로운 방법론을 제시하고자 한다. 토픽 모델링을 활용하여 코로나 전과 후의 강의평을 분석하고 이를 통해 강의 만족도 영향요인을 파악하여 대학교육이 나아가야 할 방향성을 제언하였다. 또한, 딥러닝 언어 모델인 KoBERT를 기반으로 0.84의 F1-score를 보이는 토픽 분류 모델을 구축함으로써 강의의 만족, 불만족 요인을 다각도로 파악할 수 있으며 이를 통해 강의 만족도의 지속적인 질적 향상에 기여할 수 있다.

자유대화의 음향적 특징 및 언어적 특징 기반의 성인과 노인 분류 성능 비교 (Comparison of Classification Performance Between Adult and Elderly Using Acoustic and Linguistic Features from Spontaneous Speech)

  • 한승훈;강병옥;동성희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권8호
    • /
    • pp.365-370
    • /
    • 2023
  • 사람은 노화과정에 따라 발화의 호흡, 조음, 높낮이, 주파수, 언어 표현 능력 등이 변화한다. 본 논문에서는 이러한 변화로부터 발생하는 음향적, 언어적 특징을 기반으로 발화 데이터를 성인과 노인 두 그룹으로 분류하는 성능을 비교하고자 한다. 음향적 특징으로는 발화 음성의 주파수 (frequency), 진폭(amplitude), 스펙트럼(spectrum)과 관련된 특징을 사용하였으며, 언어적 특징으로는 자연어처리 분야에서 우수한 성능을 보이고 있는 한국어 대용량 코퍼스 사전학습 모델인 KoBERT를 통해 발화 전사문의 맥락 정보를 담은 은닉상태 벡터 표현을 추출하여 사용하였다. 본 논문에서는 음향적 특징과 언어적 특징을 기반으로 학습된 각 모델의 분류 성능을 확인하였다. 또한, 다운샘플링을 통해 클래스 불균형 문제를 해소한 뒤 성인과 노인 두 클래스에 대한 각 모델의 F1 점수를 확인하였다. 실험 결과로, 음향적 특징을 사용하였을 때보다 언어적 특징을 사용하였을 때 성인과 노인 분류에서 더 높은 성능을 보이는 것으로 나타났으며, 클래스 비율이 동일하더라도 노인에 대한 분류 성능보다 성인에 대한 분류 성능이 높음을 확인하였다.