• 제목/요약/키워드: koBERT

검색결과 76건 처리시간 0.022초

딥러닝 기법을 활용한 산업/직업 자동코딩 시스템 (An Automated Industry and Occupation Coding System using Deep Learning)

  • 임정우;문현석;이찬희;우찬균;임희석
    • 한국융합학회논문지
    • /
    • 제12권4호
    • /
    • pp.23-30
    • /
    • 2021
  • 본 산업/직업 자동코딩 시스템은 조사 대상자들이 응답한 방대한 양의 산업/직업을 설명하는 자연어 데이터에 통계 분류 코드를 자동으로 부여하는 시스템이다. 본 연구는 기존의 정보검색 기반의 산업/직업 자동코딩시스템과 다르게 딥러닝을 이용하여 색인 DB가 필요하지 않고 분류 수준에 상관없이 코드를 부여할 수 있는 시스템을 제안한다. 또한, 자연어 처리에 특화된 딥러닝 기법인 KoBERT를 적용한 제안 모델은 인구주택총조사 산업/직업 코드 분류, 그리고 사업체기초조사 산업 코드 분류에서 각각 95.65%, 91.45%, 97.66%의 Top 10 정확도를 보인다. 제안한 모델 실험 후 향후 개선 가능성을 데이터/모델링 관점으로 분석한다.

반자동구축된 개체명 주석코퍼스 DecoNAC과 KoBERT를 이용한 개체명인식 플랫폼 DecoNERO (A Named Entity Recognition Platform Based on Semi-Automatically Built NE-annotated Corpora and KoBERT)

  • 김신우;황창회;윤정우;이성현;최수원;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.304-309
    • /
    • 2020
  • 본 연구에서는 한국어 전자사전 DECO(Dictionnaire Electronique du COreen)와 다단어(Multi-Word Expressions: MWE) 개체명을 부분 패턴으로 기술하는 부분문법그래프(Local-Grammar Graph: LGG) 프레임에 기반하여 반자동으로 개체명주석 코퍼스 DecoNAC을 구축한 후, 이를 개체명 분석에 활용하고 또한 기계학습에 필요한 도메인별 학습 데이터로 활용하는 DecoNERO 개체명인식 플랫폼을 소개하는 데에 목적을 두었다. 최근 들어 좋은 성과를 보이는 것으로 보고되고 있는 기계학습 방법론들은 다양한 도메인을 기반으로한 대규모의 학습데이터를 필요로 한다. 본 연구에서는 정교하게 설계된 개체명 사전과 다단어 개체명 시퀀스에 대한 언어자원을 바탕으로 하는 반자동으로 학습데이터를 생성하는 방법론을 제안하였다. 본 연구에서 제안된 개체명주석 코퍼스 DecoNAC 기반 접근법의 성능을 실험하기 위해 온라인 뉴스 기사 텍스트를 바탕으로 실험을 진행하였다. 이 실험에서 DecoNAC을 적용한 경우, KoBERT 모델만으로 개체명을 인식한 결과에 비해 약 7.49%의 성능향상을 기대할 수 있음을 확인하였다.

  • PDF

자연어처리 알고리즘을 이용한 위험기반 항공안전데이터 자동분류 방안 연구 (A Study on Auto-Classification of Aviation Safety Data using NLP Algorithm)

  • 양성훈;최영;정소영;안주현
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.528-535
    • /
    • 2022
  • 항공기 제작 및 운송 기술 발달로 국내 항공산업은 비약적인 발전을 이루었으나, 항공안전 사고는 지속해서 발생하고 있다. 관리 감독기관에서는 위험기반 항공안전데이터를 기반으로 위해 요인과 위험도를 분류하고, 운송사업자별 안전 경향성 파악과 취약분야를 도출하여 사전점검을 수행함으로써 사건·사고를 사전 예방중에 있다. 그러나 자연어 형식으로 기술된 항공안전데이터의 휴먼 분류는 지식과 경험, 성향에 따라 서로 다른 분류 결과를 초래하고, 이벤트 내용의 의미 파악 및 분류를 위한 작업에 상당한 시간을 소요케 한다. 이에, 본 논문에서는 KoBERT 모델을 fine-tunning하고 5천 건 이상의 항공안전데이터를 기계학습 시켜 신규 데이터의 분류 값을 예측한 결과 79.2%의 정확성을 보였다. 그리고 유사 이벤트에 대해 동일한 결과 예측과 fail 된 데이터 중 일부는 휴먼 에러에 의한 오류임을 확인할 수 있었다.

사용자 감정 인식과 공감적 대화 생성: ChatGPT와 소형 언어 모델 비교 (Empathetic Dialogue Generation based on User Emotion Recognition: A Comparison between ChatGPT and SLM)

  • 허승훈;이정민;조민수;권오욱;황금하
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.570-573
    • /
    • 2024
  • 본 연구는 대형 언어 모델 (LLM) 시대에 공감적 대화 생성을 위한 감정 인식의 필요성을 확인하고 소형 언어 모델 (SLM)을 통한 미세 조정 학습이 고비용 LLM, 특히 ChatGPT의 대안이 될 수 있는지를 탐구한다. 이를 위해 KoBERT 미세 조정 모델과 ChatGPT를 사용하여 사용자 감정을 인식하고, Polyglot-Ko 미세 조정 모델 및 ChatGPT를 활용하여 공감적 응답을 생성하는 비교 실험을 진행하였다. 실험 결과, KoBERT 기반의 감정 분류기는 ChatGPT의 zero-shot 접근 방식보다 뛰어난 성능을 보였으며, 정확한 감정 분류가 공감적 대화의 질을 개선하는 데 기여함을 확인하였다. 이는 공감적 대화 생성을 위해 감정 인식이 여전히 필요하며, SLM의 미세 조정이 고비용 LLM의 실용적 대체 수단이 될 수 있음을 시사한다.

딥러닝 자동 분류 모델을 위한 공황장애 소셜미디어 코퍼스 구축 및 분석 (Building and Analyzing Panic Disorder Social Media Corpus for Automatic Deep Learning Classification Model)

  • 이수빈;김성덕;이주희;고영수;송민
    • 정보관리학회지
    • /
    • 제38권2호
    • /
    • pp.153-172
    • /
    • 2021
  • 본 연구는 공황장애 말뭉치 구축과 분석을 통해 공황장애의 특성을 살펴보고 공황장애 경향 문헌을 분류할 수 있는 딥러닝 자동 분류 모델을 만들고자 하였다. 이를 위해 소셜미디어에서 수집한 공황장애 관련 문헌 5,884개를 정신 질환 진단 매뉴얼 기준으로 직접 주석 처리하여 공황장애 경향 문헌과 비 경향 문헌으로 분류하였다. 이 중 공황장애 경향 문헌에 나타난 어휘적 특성 및 어휘의 관계성을 분석하기 위해 TF-IDF값을 산출하고 단어 동시출현 분석을 실시하였다. 공황장애의 특성 및 증상 간의 관련성을 분석하기 위해 증상 빈도수와 주석 처리된 증상 번호 간의 동시출현 빈도수를 산출하였다. 또한, 구축한 말뭉치를 활용하여 딥러닝 자동 분류 모델 학습 및 성능 평가를 하였다. 이를 위하여 최신 딥러닝 언어 모델 BERT 중 세 가지 모델을 활용하였고 이 중 KcBERT가 가장 우수한 성능을 보였다. 본 연구는 공황장애 관련 증상을 겪는 사람들의 조기 진단 및 치료를 돕고 소셜미디어 말뭉치를 활용한 정신 질환 연구의 영역을 확장하고자 시도한 점에서 의의가 있다.

사전 학습 언어 모델을 활용한 감정 말뭉치 구축 연구 (A Study on the Construction of an Emotion Corpus Using a Pre-trained Language Model )

  • 장연지 ;비립 ;강예지 ;강혜린 ;박서윤 ;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.238-244
    • /
    • 2022
  • 감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.

  • PDF

한국어 사전학습 모델을 활용한 자연어 처리 모델 자동 산출 시스템 설계 (An Automated Production System Design for Natural Language Processing Models Using Korean Pre-trained Model)

  • 장지형;최호윤;이건우;최명석;홍참길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.613-618
    • /
    • 2022
  • 효과적인 자연어 처리를 위해 제안된 Transformer 구조의 등장 이후, 이를 활용한 대규모 언어 모델이자 사전학습 모델인 BERT, GPT, OPT 등이 공개되었고, 이들을 한국어에 보다 특화한 KoBERT, KoGPT 등의 사전학습 모델이 공개되었다. 자연어 처리 모델의 확보를 위한 학습 자원이 늘어나고 있지만, 사전학습 모델을 각종 응용작업에 적용하기 위해서는 데이터 준비, 코드 작성, 파인 튜닝 및 저장과 같은 복잡한 절차를 수행해야 하며, 이는 다수의 응용 사용자에게 여전히 도전적인 과정으로, 올바른 결과를 도출하는 것은 쉽지 않다. 이러한 어려움을 완화시키고, 다양한 기계 학습 모델을 사용자 데이터에 보다 쉽게 적용할 수 있도록 AutoML으로 통칭되는 자동 하이퍼파라미터 탐색, 모델 구조 탐색 등의 기법이 고안되고 있다. 본 연구에서는 한국어 사전학습 모델과 한국어 텍스트 데이터를 사용한 자연어 처리 모델 산출 과정을 정형화 및 절차화하여, 궁극적으로 목표로 하는 예측 모델을 자동으로 산출하는 시스템의 설계를 소개한다.

  • PDF

DECO-LGG 반자동 증강 학습데이터 활용 멀티태스크 트랜스포머 모델 기반 핀테크 CS 챗봇 NLU 시스템 (Multitask Transformer Model-based Fintech Customer Service Chatbot NLU System with DECO-LGG SSP-based Data)

  • 유광훈;황창회;윤정우;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.461-466
    • /
    • 2021
  • 본 연구에서는 DECO(Dictionnaire Electronique du COreen) 한국어 전자사전과 LGG(Local-Grammar Graph)에 기반한 반자동 언어데이터 증강(Semi-automatic Symbolic Propagation: SSP) 방식에 입각하여, 핀테크 분야의 CS(Customer Service) 챗봇 NLU(Natural Language Understanding)을 위한 주석 학습 데이터를 효과적으로 생성하고, 이를 기반으로 RASA 오픈 소스에서 제공하는 DIET(Dual Intent and Entity Transformer) 아키텍처를 활용하여 핀테크 CS 챗봇 NLU 시스템을 구현하였다. 실 데이터을 통해 확인된 핀테크 분야의 32가지의 토픽 유형 및 38가지의 핵심 이벤트와 10가지 담화소 구성에 따라, DECO-LGG 데이터 생성 모듈은 질의 및 불만 화행에 대한 양질의 주석 학습 데이터를 효과적으로 생성하며, 이를 의도 분류 및 Slot-filling을 위한 개체명 인식을 종합적으로 처리하는 End to End 방식의 멀티태스크 트랜스포머 모델 DIET로 학습함으로써 DIET-only F1-score 0.931(Intent)/0.865(Slot/Entity), DIET+KoBERT F1-score 0.951(Intent)/0.901(Slot/Entity)의 성능을 확인하였으며, DECO-LGG 기반의 SSP 생성 데이터의 학습 데이터로서의 효과성과 함께 KoBERT에 기반한 DIET 모델 성능의 우수성을 입증하였다.

  • PDF

기계 독해를 이용한 COVID-19 뉴스 도메인의 한국어 질의응답 챗봇 (Korean Q&A Chatbot for COVID-19 News Domains Using Machine Reading Comprehension)

  • 이태민;박기남;박정배;정영희;채정민;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.540-542
    • /
    • 2020
  • 코로나 19와 관련한 다양한 정보 확인 욕구를 충족하기 위해 한국어 뉴스 데이터 기반의 질의응답 챗봇을 설계하고 구현하였다. BM25 기반의 문서 검색기, 사전 언어 모형인 KoBERT 기반의 문서 독해기, 정답 생성기의 세 가지 모듈을 중심으로 시스템을 설계하였다. 뉴스, 위키, 통계 정보를 수집하여 웹 기반의 챗봇 인터페이스로 질의응답이 가능하도록 구현하였다. 구현 결과는 http://demo.tmkor.com:36200/mrcv2 페이지에서 접근 및 사용을 할 수 있다.

  • PDF

특허문서의 한국어 화합물 개체명 인식 (Korean Chemical Named Entity Recognition in Patent Documents)

  • 신진섭;김경민;김성찬;이문용
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.522-524
    • /
    • 2023
  • 화합물 관련 한국어 문서는 화합물 정보를 추출하여 그 용도를 발견할 수 있는 중요한 문서임에도 불구하고 자연어 처리를 위한 말뭉치의 구축이 되지 않아서 활용이 어려웠다. 이 연구에서는 최초로 한국 특허 문서에서 한국어 화합물 개체명 인식(Chemical Named Entity Recognition, CNER)을 위한 말뭉치를 구축하였다. 또한 구축된 CNER 말뭉치를 기본 모델인 Bi-LSTM과 KorBERT 사전학습 모델을 미세 조정하여 개체명 인식을 수행하였다. 한국어 CNER F1 성능은 Bi-LSTM 기반 모델이 83.71%, KoCNER 말뭉치를 활용하는 자연어 처리 기술들은 한국어 논문에 대한 화합물 개체명 인식으로 그 외연을 확대하고, 한국어로 작성된 화합물 관련 문서에서 화합물 명칭뿐만 아니라 물성, 반응 등의 개체를 추출하고 관계를 규명하는데 활용 될 수 있을 것이다.

  • PDF