• Title/Summary/Keyword: koBERT

검색결과 76건 처리시간 0.03초

KoBERT, 나이브 베이즈, 로지스틱 회귀의 한국어 쓰기 답안지 점수 구간 예측 성능 비교 (Comparison of Automatic Score Range Prediction of Korean Essays Using KoBERT, Naive Bayes & Logistic Regression)

  • 조희련;임현열;차준우;이유미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.501-504
    • /
    • 2021
  • 한국어 심층학습 언어모델인 KoBERT와, 확률적 기계학습 분류기인 나이브 베이즈와 로지스틱 회귀를 이용하여 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 실험을 진행하였다. 네가지 주제('직업', '행복', '경제', '성공')를 다룬 답안지와 점수 레이블(A, B, C, D)로 쌍을 이룬 학습데이터 총 304건으로 다양한 자동분류 모델을 구축하여 7-겹 교차검증을 시행한 결과 KoBERT가 나이브 베이즈나 로지스틱 회귀보다 약간 우세한 성능을 보였다.

KoBERT를 활용한 실시간 보이스피싱 탐지기법 개념설계 (Design of Real-Time Voice Phishing Detection Techniques using KoBERT)

  • 김영진;이병엽;강아름
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.95-96
    • /
    • 2024
  • 본 논문은 금융 범죄 중 하나인 보이스피싱을 실시간으로 예방하기 위한 탐지 기법을 제안한다. 제안된 모델은 수화기에 출력되는 음성을 녹음하고 네이버 CSR(Cloud Speech Recognition)을 통해 텍스트 파일로 변환한 후 딥러닝 기반의 KoBERT를 바탕으로 다양한 보이스피싱 패턴을 학습하여 실시간 환경에서의 신속하고 정확한 탐지를 위해 실제 통화 데이터를 적절하게 처리하여, 이를 통해 효과적인 보이스피싱 예방에 도움을 줄 것으로 예상된다.

  • PDF

BERT 언어 모델을 이용한 감정 분석 시스템 (Sentiment Analysis System by Using BERT Language Model)

  • 김택현;조단비;이현영;원혜진;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.975-977
    • /
    • 2020
  • 감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.

한국어 언어학적 특성 기반 감성분석 모델 비교 분석 (Comparative Study of Sentiment Analysis Model based on Korean Linguistic Characteristics)

  • 김경민;박찬준;조재춘;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.149-152
    • /
    • 2019
  • 감성분석이란 입력된 텍스트의 감성을 분류하는 자연어처리의 한 분야로, 최근 CNN, RNN, Transformer등의 딥러닝 기법을 적용한 다양한 연구가 있다. 한국어 감성분석을 진행하기 위해서는 형태소, 음절 등의 추가 자질을 활용하는 것이 효과적이며 성능 향상을 기대할 수 있는 방법이다. 모델 생성에 있어서 아키텍쳐 구성도 중요하지만 문맥에 따른 언어를 컴퓨터가 표현할 수 있는 지식 표현 체계 구성도 상당히 중요하다. 이러한 맥락에서 BERT모델은 문맥을 완전한 양방향으로 이해할 수있는 Language Representation 기반 모델이다. 본 논문에서는 최근 CNN, RNN이 융합된 모델과 Transformer 기반의 한국어 KoBERT 모델에 대해 감성분석 task에서 다양한 성능비교를 진행했다. 성능분석 결과 어절단위 한국어 KoBERT모델에서 90.50%의 성능을 보여주었다.

  • PDF

한국어 개체명 인식 과제에서의 의미 모호성 연구 (A study on semantic ambiguity in the Korean Named Entity Recognition)

  • 김성현;송영숙;송치성;한지윤
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.203-208
    • /
    • 2021
  • 본 논문에서는 맥락에 따라 개체명의 범주가 달라지는 어휘를 중심으로 교차 태깅된 개체명의 성능을 레이블과 스팬 정답률, 문장 성분과 문장 위치에 따른 정답률로 나누어 살펴 보았다. 레이블의 정확도는 KoGPT2, mBERT, KLUE-RoBERTa 순으로 정답률이 높아지는 양상을 보였다. 스팬 정답률에서는 mBERT가 KLUE-RoBERTa보다 근소하게 성능이 높았고 KoGPT2는 매우 낮은 정확도를 보였다. 다만, KoGPT2는 개체명이 문장의 끝에 위치할 때는 다른 모델과 비슷한 정도로 성능이 개선되는 결과를 보였다. 문장 종결 위치에서 인식기의 성능이 좋은 것은 실험에 사용된 말뭉치의 문장 성분이 서술어일 때 명사의 중첩이 적고 구문이 패턴화되어 있다는 특징과 KoGPT2가 decoder기반의 모델이기 때문으로 여겨지나 이에 대해서는 후속 연구가 필요하다.

  • PDF

한국어 언어 모델을 활용한 보이스피싱 탐지 기능 개선 (Exploiting Korean Language Model to Improve Korean Voice Phishing Detection)

  • ;박동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권10호
    • /
    • pp.437-446
    • /
    • 2022
  • 보이스피싱 통화 내용을 탐지하고 분류하는데 핵심 엔진으로 최신 머신러닝(ML) 및 딥러닝(DL) 알고리즘과 결합된 자연어 처리(NLP)의 텍스트 분류 작업이 널리 사용된다. 비대면 금융거래의 증가와 더불어 보이스피싱 통화 내용 분류에 대한 많은 연구가 진행되고 양호한 성과를 보이고 있지만, 최신 NLP 기술을 활용한 성능 개선의 필요성이 여전히 존재한다. 본 논문은 KorCCVi라는 레이블이 지정된 한국 보이스 피싱 데이터의 텍스트 분류를 기반으로 여러 다른 최신 알고리즘과 비교하여 사전 훈련된 한국어 모델 KoBERT의 한국 보이스 피싱 탐지 성능을 벤치마킹한다. 실험 결과에 따르면 KoBERT 모델의 테스트 집합에서 분류 정확도가 99.60%로 다른 모든 모델의 성능을 능가한다.

엔터티 위치 정보를 활용한 한국어 관계추출 모델 비교 및 분석 (A Comparative Study on Korean Relation Extraction with entity position information)

  • 손수현;허윤아;임정우;심미단;박찬준;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.247-250
    • /
    • 2021
  • 관계추출(Relation Extraction)이란 주어진 문장에서 엔터티간의 관계를 예측하는 것을 목표로 하는 태스크이다. 이를 위해 문장 구조에 대한 이해와 더불어 두 엔터티간의 관계성 파악이 핵심이다. 기존의 관계추출 연구는 영어 데이터를 기반으로 발전되어 왔으며 그에 반해 한국어 관계 추출에 대한 연구는 부족하다. 이에 본 논문은 한국어 문장내의 엔터티 정보에 대한 위치 정보를 활용하여 관계를 예측할 수 있는 방법론을 제안하였으며 이를 다양한 한국어 사전학습 모델(KoBERT, HanBERT, KorBERT, KoELECTRA, KcELECTRA)과 mBERT를 적용하여 전반적인 성능 비교 및 분석 연구를 진행하였다. 실험 결과 본 논문에서 제안한 엔터티 위치 토큰을 사용하였을때의 모델이 기존 연구들에 비해 좋은 성능을 보였다.

  • PDF

TF-IDF와 KoBERT 모델을 이용한 인터넷 뉴스 신뢰도 판별 (Identification of Internet news reliability using TF-IDF and KoBERT models)

  • 김나현;서익원;김정현;손채영;유동영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.353-354
    • /
    • 2023
  • 디지털 환경이 진화함에 따라 가짜뉴스가 늘어나고 있다. 이를 판별하기 위해 법적 규제에 대한 논의가 있으나, 가짜뉴스에 대한 범위와 정의가 명확하지 않아 규제가 쉽지 않다. 본 논문에서는 이에 대한 대안으로 TF-IDF 기법과 KoBERT 모델을 이용한 키워드 추출 및 문장 유사도 분석을 통해 YouTube 플랫폼을 대상으로 한 가짜뉴스 판별을 위한 모델을 제안한다.

KoBERT 모델 기반 한국어 뉴스 기사 제목 선정성 및 폭력성 검출 (Detection of sexuality and violence in Korean news article title based on KoBERT mode)

  • 김민지;김환도;봉지민;김대환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.570-571
    • /
    • 2023
  • 최근 선정적이고 폭력적인 뉴스 기사 제목의 여과 없는 노출로 인하여 유해한 언어 접촉이 빈번히 이루어지고 있다. 자극적인 단어에 지속적으로 노출되는 것은 인지 능력에 부정적 영향을 주는 것으로 알려져 있다. 따라서 이를 사전에 판별하여 정보를 수용하는 것이 필요하다. 본 논문에서는 KoBERT를 기반으로 한국어 뉴스 기사 제목에서 선정성과 폭력성을 검출하고자 한다. 학습을 위한 뉴스 기사 제목들은 인터넷에서 무작위로 총 9,500개의 데이터를 크롤링 하여 수집하였고, 모델의 말단에 NLNet을 추가하여 문장 전체의 관계를 학습했다. 그 결과 선정성 및 폭력성을 약 89%의 정확도로 검출하였다.

KoBERT를 활용한 식품 게시글 카테고리 분류 모델의 설계 (Design of Category Classification Model for Food Posts using KoBERT)

  • 현태민;김희진;임은지;길준민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.572-573
    • /
    • 2023
  • 본 논문에서는 식품 판매 게시글에 대한 카테고리 분류를 위해 자연어처리 모델인 KoBERT 모델에 기반하여 식품 판매글에 대한 카테고리 분류 모델을 설계하고 구현한다. 본 논문을 통해 구현된 식품 판매 게시글의 카테고리 분류 모델은 정확도 평가에 대해서 비교적 우수한 성능을 산출하였다.