This paper tries to closely look at compliance knowledge relatedness and IT relatedness based on Tanriverdi's 'relatedness' concept. Also, this paper's main focus lies on how knowledge relatedness and IT relatedness influence compliance performance through compliance knowledge exploitation. The present study conducted a full-scale survey and finalized questionnaire was sent to compliance managers of 187 Korean multi-business firms. This study found (1) the impact of compliance knowledge relatedness on compliance performance, (2) the mediating role of knowledge exploitation on the relationship between compliance knowledge relatedness and compliance performance, and (3) the interaction effect of IT relatedness and compliance knowledge relatedness on knowledge exploitation. This paper contributes to both academic and business world by widening applicability of theories and providing guidelines conducive to improved compliance performance of corporations.
This research examines the effect of the relatedness and the gap between Resources and mechanisms on effectiveness of inter-organizational knowledge transfer. According to the literature, there has been a competing theory between two claims; one is that inter-organizational knowledge transfer will be more effective due to the reduction of the transaction cost as the relatedness increases. And the other is that the mutual complementarity of different organizational characteristics will increase synergy. In total, the relatedness and the gap of the Resource and mechanism makes the inverted U-shaped relationship with the inter-organizational knowledge transfer. As the result of empirical analysis about 109 Korean-based Joint Ventures entered country, it shows that the relatedness of parent company's production Resources, learning mechanisms, and coordination mechanisms made the inverted U-shaped relations with the inter-organizational knowledge transfer and the gap of production Resources and adjustment mechanism formed the same relationship. However, the U-shaped relationship has been established in the relatedness of market Resources, but the gap of market Resources and the learning mechanism was not statistically significant. Through this study, I can draw a best conclusion that the inter-organizational knowledge transfer will be more effective when the relatedness and the gap of management resources and mechanisms is in optimal level. However, when it comes to market Resources, it can be inferred that the result could be the opposite because the partner country's market environment would be different.
This paper proposes an approach using taxonomic relatedness for answer-type recognition and type coercion in a question-answering system. We introduce a question analysis method for a lexical answer type (LAT) and semantic answer type (SAT) and describe the construction of a taxonomy linking them. We also analyze the effectiveness of type coercion based on the taxonomic relatedness of both ATs. Compared with the rule-based approach of IBM's Watson, our LAT detector, which combines rule-based and machine-learning approaches, achieves an 11.04% recall improvement without a sharp decline in precision. Our SAT classifier with a relatedness-based validation method achieves a precision of 73.55%. For type coercion using the taxonomic relatedness between both ATs and answer candidates, we construct an answer-type taxonomy that has a semantic relationship between the two ATs. In this paper, we introduce how to link heterogeneous lexical knowledge bases. We propose three strategies for type coercion based on the relatedness between the two ATs and answer candidates in this taxonomy. Finally, we demonstrate that this combination of individual type coercion creates a synergistic effect.
The purpose of this research is to represent how ICT relatedness and organization environment influence on interactions between healthcare specialist and patients, and how knowledge sharing influence on healthcare innovation, and how service innovation influence on service performance through structured research model. This research also has applied to resource based view, adaptive structuration theory, service innovation, ICT relatedness to find out performance effect on healthcare service innovation and service performance. In other words, organization structure environment and ICT relatedness are important factors to promote interaction between healthcare service providers and customers like patients each other, moreover, to share the tacit knowledge by creating in the interaction. Moreover in order to verify model fitness, this research has surveyed among healthcare specialists, technicians and other staffs. Model verification result, all hypotheses have been found to give a positive effect on the creation and significantly. Structured organizational environment and ICT association is to promote the organization's functions by influencing the behavior of the service organization and patient interaction and knowledge sharing, and suggests that the major factors influencing the innovation performance of hospitals and health care services.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.2
/
pp.111-118
/
2015
Entity linking is to link entity's name mentions occurring in text to corresponding entities within knowledge bases. Since the same entity mention may refer to different entities according to their context, entity linking needs to deal with entity disambiguation. Most recent works on entity disambiguation focus on semantic relatedness between entities and attempt to integrate semantic relatedness with entity prior probabilities and term co-occurrence. To the best of my knowledge, however, it is hard to find studies that analyze and present the pure effects of semantic relatedness on entity disambiguation. From the experimentation on Korean Wikipedia data set, this article empirically evaluates entity disambiguation approaches using semantic relatedness in terms of the following aspects: (1) the difference among semantic relatedness measures such as NGD, PMI, Jaccard, Dice, Simpson, (2) the influence of ambiguities in co-occurring entity mentions' set, and (3) the difference between individual and collective disambiguation approaches.
Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.
Journal of the Korean Regional Science Association
/
v.37
no.3
/
pp.3-18
/
2021
The fourth Industrial Revolution is transforming the industrial structure of the region, and it is necessary to develop new industries and technologies that reflect regional characteristics. The purpose of this study is to measure the knowledge relatedness and technological complexity in Busan, Ulsan, and Gyeongnam, and to identify technologies with potential for regional industrial differentiation strategies. Using patent data from 2015 to 2019, co-occurrence matrices were derived from 652 IPC codes, and the knowledge relatedness density and technology complexity index were calculated. Network analysis was performed using the knowledge relatedness density. As a result of analysis, it was found that mechanical engineering occupied a large proportion, followed by chemistry and electrical engineering. As a result of applying the risk-benefit framework to derive technologies with the potential to differentiate local industries, the technological capabilities of low-risk-high-benefit were different. Among mechanical engineering, technologies such as engine, machine operation, and transportation were included in Busan. In Ulsan, environmental technology in chemical and materials, and heat treatment technology in mechanical engineering were technologies with low-risk and high-benefit capabilities. Gyeongnam showed competence in mechanical engineering, chemistry, and electrical engineering in some areas such as Gimhae, Yangsan, and Changwon. The results of this study are meaningful in that they identified technologies with potential for selecting and deriving strategic industries for regional growth based on latent knowledge in the region.
Although merger and acquisition (M&A) has been considered as an important means to improve firm performance, most prior empirical research have failed to prove the relationship between M&A and firm performance. In order to fill this gap, this study attempts to identify the effect of M&A on firm performance based on knowledge resources relatedness and complementarity theory. For this purpose, this study examines complementarity patterns of knowledge resources and their impacts on acquirer's performance using M&A announcements of electronic commerce industry from 2001 to 2007. The results of this study indicate complementarity among knowledge resources are positively related with acquirer's market value. This study contributes to expand knowledge management research by identifying the relationship among knowledge resources and their impacts on firm performance.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.32
no.1
/
pp.247-265
/
2021
Recently, public libraries have increased in quantity, while various problems have arisen regarding the operation of public libraries, such as lack of librarian manpower and facilities. Additionally, an increase in the number of public libraries does not correlate to an increase in the utilization of public libraries, and thus developing various services is needed to maintain the continued use of public libraries. This study examined which types of use motivations affect the intention of knowledge exchange in public libraries when using public libraries based on the self-determination theory. It also looked at how the use motivations and the intention of knowledge exchange vary depending on the frequency of public library use. According to an online survey of 230 users of public libraries, extrinsic motivation, intrinsic motivation, autonomy, competence, and relatedness as independent variables had a positive impact on the level of knowledge exchange. In addition, the higher the frequency of public library use, the higher the needs for autonomy and relatedness were. Based on the results, it was suggested that the knowledge exchange needs to be established as a new service of public libraries by offsetting extrinsic motivation that emerged from by negative influences and promoting intrinsic motivation, autonomy and competence.
Journal of Information Science Theory and Practice
/
v.6
no.2
/
pp.46-61
/
2018
The mobile social networking application Instagram is a well-known platform for sharing photos and videos. Since it is folksonomy-oriented, it provides the possibility for image indexing and knowledge representation through the assignment of hashtags to posted content. The purpose of this study is to analyze how Instagram users tag their pictures regarding different kinds of picture and hashtag categories. For such a content analysis, a distinction is made between Food, Pets, Selfies, Friends, Activity, Art, Fashion, Quotes (captioned photos), Landscape, and Architecture image categories as well as Content-relatedness (ofness, aboutness, and iconology), Emotiveness, Isness, Performativeness, Fakeness, "Insta"-Tags, and Sentences as hashtag categories. Altogether, 14,649 hashtags of 1,000 Instagram images were intellectually analyzed (100 pictures for each image category). Research questions are stated as follows: RQ1: Are there any differences in relative frequencies of hashtags in the picture categories? On average the number of hashtags per picture is 15. Lowest average values received the categories Selfie (average 10.9 tags per picture) and Friends (average 11.7 tags per picture); for highest, the categories Pet (average 18.6 tags), Fashion (average 17.6 tags), and Landscape (average 16.8 tags). RQ2: Given a picture category, what is the distribution of hashtag categories; and given a hashtag category, what is the distribution of picture categories? 60.20% of all hashtags were classified into the category Content-relatedness. Categories Emotiveness (about 4.38%) and Sentences (0.99%) were less often frequent. RQ3: Is there any association between image categories and hashtag categories? A statistically significant association between hashtag categories and image categories on Instagram exists, as a chi-square test of independence shows. This study enables a first broad overview on the tagging behavior of Instagram users and is not limited to a specific hashtag or picture motive, like previous studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.