• Title/Summary/Keyword: knot diagram change

Search Result 4, Processing Time 0.016 seconds

Polynomials and Homotopy of Virtual Knot Diagrams

  • Jeong, Myeong-Ju;Park, Chan-Young;Park, Maeng Sang
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.145-161
    • /
    • 2017
  • If a virtual knot diagram can be transformed to another virtual one by a finite sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual knot diagrams are said to be homotopic. There are infinitely many homotopy classes of virtual knot diagrams. We give necessary conditions by using polynomial invariants of virtual knots for two virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves and virtual moves between two homotopic virtual knot diagrams, we give a lower bound for the number of crossing changes in S by using the affine index polynomial introduced in [13]. In [10], the first author gave the q-polynomial of a virtual knot diagram to find Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply Reidemeister moves by using the q-polynomial to show homotopy of two virtual knot diagrams.

AN ELEMENTARY PROOF OF THE EFFECT OF 3-MOVE ON THE JONES POLYNOMIAL

  • Cho, Seobum;Kim, Soojeong
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.95-113
    • /
    • 2018
  • A mathematical knot is an embedded circle in ${\mathbb{R}}^3$. A fundamental problem in knot theory is classifying knots up to its numbers of crossing points. Knots are often distinguished by using a knot invariant, a quantity which is the same for equivalent knots. Knot polynomials are one of well known knot invariants. In 2006, J. Przytycki showed the effects of a n - move (a local change in a knot diagram) on several knot polynomials. In this paper, the authors review about knot polynomials, especially Jones polynomial, and give an alternative proof to a part of the Przytychi's result for the case n = 3 on the Jones polynomial.

On Crossing Changes for Surface-Knots

  • Al Kharusi, Amal;Yashiro, Tsukasa
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1247-1257
    • /
    • 2016
  • In this paper, we discuss the crossing change operation along exchangeable double curves of a surface-knot diagram. We show that under certain condition, a finite sequence of Roseman moves preserves the property of those exchangeable double curves. As an application for this result, we also define a numerical invariant for a set of surface-knots called du-exchangeable set.

PARTIALLY ABELIAN REPRESENTATIONS OF KNOT GROUPS

  • Cho, Yunhi;Yoon, Seokbeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.239-250
    • /
    • 2018
  • A knot complement admits a pseudo-hyperbolic structure by solving Thurston's gluing equations for an octahedral decomposition. It is known that a solution to these equations can be described in terms of region variables, also called w-variables. In this paper, we consider the case when pinched octahedra appear as a boundary parabolic solution in this decomposition. The w-solution with pinched octahedra induces a solution for a new knot obtained by changing the crossing or inserting a tangle at the pinched place. We discuss this phenomenon with corresponding holonomy representations and give some examples including ones obtained from connected sum.