• Title/Summary/Keyword: knock down

Search Result 131, Processing Time 0.027 seconds

Memantine Induces NMDAR1-Mediated Autophagic Cell Death in Malignant Glioma Cells

  • Yoon, Wan-Soo;Yeom, Mi-Young;Kang, Eun-Sun;Chung, Yong-An;Chung, Dong-Sup;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Objective : Autophagy is one of the key responses of cells to programmed cell death. Memantine, an approved anti-dementia drug, has an antiproliferative effect on cancer cells but the mechanism is poorly understood. The aim of the present study was to test the possibility of induction of autophagic cell death by memantine in glioma cell lines. Methods : Glioma cell lines (T-98 G and U-251 MG) were used for this study. Results : The antiproliferative effect of memantine was shown on T-98 G cells, which expressed N-methyl-D-aspartate 1 receptor (NMDAR1). Memantine increased the autophagic-related proteins as the conversion ratio of light chain protein 3-II (LC3-II)-/LC3-I and the expression of beclin-1. Memantine also increased formation of autophagic vacuoles observed under a transmission electron microscope. Transfection of small interfering RNA (siRNA) to knock down NMDAR1 in the glioma cells induced resistance to memantine and decreased the LC3-II/LC3-I ratio in T-98 G cells. Conclusion : Our study demonstrates that in glioma cells, memantine inhibits proliferation and induces autophagy mediated by NMDAR1.

Survival Association and Cell Cycle Effects of B7H3 in Neuroblastoma

  • Zhang, Haibo;Zhang, Jinsen;Li, Chunjie;Xu, Hao;Dong, Rui;Chen, Clark C.;Hua, Wei
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.707-716
    • /
    • 2020
  • Objective : The function of B7H3, a member of the B7 family of proteins, in neuroblastoma (NB) remains poorly characterized. Here we examine the expression pattern of B7H3 in clinical NB specimens and characterize the phenotype of B7H3 knock-down in NB cell line. Methods : Immunohistochemical (IHC) staining was carried out to assess the expression of B7H3 in clinical NB specimens. Survival association was analyzed using five Gene Expression Omnibus (GEO) datasets (GSE85047, GSE45480, GSE62564, GSE16476, GSE49710). Clonogenic survival and flow cytometry were performed after B7H3 knockdown to assess the cellular proliferation and cell survival in vitro. Impact of B7H3 silencing on NB growth was examined in vivo using the SH-SY5Y xenograft model. Results : On IHC staining, B7H3 was widely expressed in clinical NB specimens. Analysis of the transcriptional profiles of five GEO datasets clinically annotated NB specimens revealed that decreased B7H3 expression was associated with improved overall survival. B7H3 knockdown suppressed the proliferation of the SH-SY5Y NB model in vitro and in vivo. Cell cycle analysis revealed that B7H3 silencing induced G1/S arrest. This arrest was associated with the suppression of E2F1 expression and induction of Rb expression. Conclusion : Our results demonstrate that B7H3 expression correlate with clinical survival in NB patients. Preliminary studies suggest that B7H3 may mediate the G1/S transition.

Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

  • Zhu, Jin-Hui;Hong, De-Fei;Song, Yong-Mao;Sun, Li-Feng;Wang, Zhi-Fei;Wang, Jian-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1017-1021
    • /
    • 2013
  • The cellular apoptosis susceptibility (CSE1L) gene has been demonstrated to regulate multiple cellular mechanisms including the mitotic spindle check point as well as proliferation and apoptosis. However, the importance of CSE1L in human colon cancer is largely unknown. In the present study, we examined expression levels of CSE1L mRNA by semiquantitative RT-PCR. A lentivirus-mediated small interfering RNA (siRNA) was used to knock down CSE1L expression in the human colon cancer cell line RKO. Changes in CSE1L target gene expression were determined by RT-PCR. Cell proliferation was examined by a high content screening assay. In vitro tumorigenesis was measured by colony-formation assay. Cell cycle distribution and apoptosis were detected by flow cytometric analysis. We found CSE1L mRNA to be expressed in human colon cancer cells. Using a lentivirus based RNAi approach, CSE1L expression was significantly inhibited in RKO cells, causing cell cycle arrest in the G2/M and S phases and a delay in cell proliferation, as well as induction of apoptosis and an inhibition of colony growth capacity. Collectively, the results suggest that silencing of CSE1L may be a potential therapeutic approach for colon cancer.

RNAi Suppression of RPN12a Decreases the Expression of Type-A ARRs, Negative Regulators of Cytokinin Signaling Pathway, in Arabidopsis

  • Ryu, Moon Young;Cho, Seok Keun;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • The 26S proteasome is a 2-MDa complex with a central role in protein turn over. The 26S proteasome is comprised of one 20S core particle and two 19S regulatory particles (RPs). The RPN12a protein, a non-ATPase subunit of the 19S RP, was previously shown to be involved in cytokinin signaling in Arabidopsis. To further investigate cellular roles of RPN12a, RNAi transgenic plants of RPN12a were constructed. As expected, the 35S:RNAi-RPN12a plants showed cytokinin signaling defective phenotypes, including abnormal formation of leaves and inflorescences. Furthermore, RNAi knock-down transgenic plants exhibited additional unique phenotypes, including concave and heart-shape cotyledons, triple cotyledons, irregular and clustered guard cells, and defects in phyllotaxy, all of which are typical for defective cytokinin signaling. We next examined the mRNA level of cytokinin signaling components, including type-A ARRs, type-B ARRs, and CRFs. The expression of type-A ARRs, encoding negative regulators of cytokinin signaling, was markedly reduced in 35S:RNAi-RPN12a transgenic plants relative to that in wild type plants, while type-B ARRs and CRFs were unaffected. Our results also indicate that in vivo stability of the ARR5 protein, a negative regulator of cytokinin signaling, is mediated by the 26S proteasome complex. These results suggest that RPN12a participates in feedback inhibitory mechanism of cytokinin signaling through modulation of the abundance of ARR5 protein in Arabidopsis.

MTA1 Overexpression Induces Cisplatin Resistance Innasopharyngeal Carcinoma by Promoting Cancer Stem Cells Properties

  • Feng, Xiaohua;Zhang, Qianbing;Xia, Songxin;Xia, Bing;Zhang, Yue;Deng, Xubin;Su, Wenmei;Huang, Jianqing
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.699-704
    • /
    • 2014
  • Themetastasis-associated gene 1 (MTA1) oncogene hasbeen suggested to be involved in the regulation of cancer progression. However, there is still no direct evidence that MTA1 regulates cisplatin (CDDP) resistance, as well as cancer stem cell properties. In this study, we found that MTA1 was enriched in CNE1/CDDP cells. Knock down of MTA1 in CNE1/CDDP cells reversed CSCs properties and CDDP resistance. However, ectopic expression of MTA1 in CNE1 cells induced CSCs phenotypes and CDDP insensitivity. Interestingly, ectopic overexpression of MTA1-induced CSCs properties and CDDP resistance were reversed in CNE1 cells after inhibition of PI3K/Akt by LY294002. In addition, MTA1 expression and Akt activity in CNE1/CDDP cells was much higher than that in CNE1 cells. These results suggested that MTA1 may play a critical role in promoting CDDP resistance in NPC cells by regulatingcancer stem cell properties via thePI3K/Akt signaling pathway. Our findings suggested that MTA1 may be a potential target for overcoming CDDP resistance in NPC therapy.

PXR Mediated Protection against Liver Inflammation by Ginkgolide A in Tetrachloromethane Treated Mice

  • Ye, Nanhui;Wang, Hang;Hong, Jing;Zhang, Tao;Lin, Chaotong;Meng, Chun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.40-48
    • /
    • 2016
  • The pregnane X receptor (PXR), a liver and intestine specific receptor,, has been reported to be related with the repression of inflammation as well as activation of cytochromosome P450 3A (CYP3A) expression. We examined the effect of PXR on tetrachloromethane (CCl4)-induced mouse liver inflammation in this work. Ginkgolide A, one main component of Ginkgo biloba extracts (GBE), activated PXR and enhanced PXR expression level, displayed both significant therapeutic effect and preventive effect against $CCl_4$-induced mouse hepatitis. siRNA-mediated decrease of PXR expression significantly reduced the efficacy of Ginkgolide A in treating $CCl_4$-induced inflammation in mice. Flavonoids, another important components of GBE, were shown anti-inflammatory effect in a different way from Ginkgolide A which might be independent on PXR because flavonoids significantly inhibited CYP3A11 activities in mice. The results indicated that anti-inflammatory effect of PXR might be mediated by enhancing transcription level of $I{\kappa}B{\alpha}$ through binding of $I{\kappa}B{\alpha}$. Inhibition of NF-${\kappa}B$ activity by NF-${\kappa}B$-specific suppressor $I{\kappa}B{\alpha}$ is one of the potential mechanisms of Ginkgolide A against CCl4-induced liver inflammation.

ZFP36L1 and AUF1 Induction Contribute to the Suppression of Inflammatory Mediators Expression by Globular Adiponectin via Autophagy Induction in Macrophages

  • Shrestha, Aastha;Pun, Nirmala Tilija;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.446-457
    • /
    • 2018
  • Adiponectin, a hormone predominantly originated from adipose tissue, has exhibited potent anti-inflammatory properties. Accumulating evidence suggests that autophagy induction plays a crucial role in anti-inflammatory responses by adiponectin. However, underlying molecular mechanisms are still largely unknown. Association of Bcl-2 with Beclin-1, an autophagy activating protein, prevents autophagy induction. We have previously shown that adiponectin-induced autophagy activation is mediated through inhibition of interaction between Bcl-2 and Beclin-1. In the present study, we examined the molecular mechanisms by which adiponectin modulates association of Bcl-2 and Beclin-1 in macrophages. Herein, we demonstrated that globular adiponectin (gAcrp) induced increase in the expression of AUF1 and ZFP36L1, which act as mRNA destabilizing proteins, both in RAW 264.7 macrophages and primary peritoneal macrophages. In addition, gene silencing of AUF1 and ZFP36L1 caused restoration of decrease in Bcl-2 expression and Bcl-2 mRNA half-life by gAcrp, indicating crucial roles of AUF1 and ZFP36L1 induction in Bcl-2 mRNA destabilization by gAcrp. Moreover, knock-down of AUF1 and ZFP36L1 enhanced interaction of Bcl-2 with Beclin-1, and subsequently prevented gAcrp-induced autophagy activation, suggesting that AUF1 and ZFP36L1 induction mediates gAcrp-induced autophagy activation via Bcl-2 mRNA destabilization. Furthermore, suppressive effects of gAcrp on LPS-stimulated inflammatory mediators expression were prevented by gene silencing of AUF1 and ZFP36L1 in macrophages. Taken together, these results suggest that AUF1 and ZFP36L1 induction critically contributes to autophagy induction by gAcrp and are promising targets for anti-inflammatory responses by gAcrp.

Interaction of Microtubule-associated Protein 1B Light Chain(MAP1B-LC1) and p53 Represses Transcriptional Activity of p53

  • Kim, Jung-Woong;Lee, So-Youn;Jeong, Mi-Hee;Jang, Sang-Min;Song, Ki-Hyun;Kim, Chul-Hong;Kim, You-Jin;Choi, Kyung-Hee
    • Animal cells and systems
    • /
    • v.12 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and can trigger apoptosis in many cell types including neurons. In this study, we have shown that Microtubule-associated protein 1B(MAP1B) light chain interacts with tumor suppressor p53. MAP1B is one of the major cytoskeletal proteins in the developing nervous system and essential in forming axons during elongation. We also demonstrate that both p53 and MAP1B-LC1 interact in the nucleus in HEK 293 cells. Indeed, we show that the MAP1B-LC1 negatively regulates p53-dependent transcriptional activity of a reporter containing the p21 promoter. Consequently, MAP1B light chain binds with p53 and their interaction leads to the inhibition of doxorubicin-induced apoptosis in HEK 293 cells. Furthermore, these examinations might be taken into consideration when knock-down of MAP1B-LC1 is used as a cancer therapeutic strategy to enhance p53's apoptotic activity in chemotherapy.

Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis

  • Kim, Song-In;Lee, Hee Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wanjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.387-397
    • /
    • 2016
  • Neurofibrillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active $GSK3{\beta}$ ($GSK3{\beta}-S9A$) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin -induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin significantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD.

DOBI is cleaved by caspases during TRAIL-induced apoptotic cell death

  • Park, Sun-Young;Shin, Jin-Na;Woo, Ha-Na;Piya, Su-Jan;Moon, Ae-Ran;Seo, Young-Woo;Seol, Dai-Wu;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.511-515
    • /
    • 2009
  • Downstream of Bid (DOBI) known as Pus10, has been identified as a modulator of TRAIL-induced cell death using RNAi library screening. The crystal structure of DOBI has revealed that it is a crescent-shaped protein containing the pseudouridine synthase catalytic domain and a THUMP-containing domain. Here, we demonstrated that DOBI is expressed in various tissues such as heart and lung, and is also expressed in various tumor cells such as HeLa and A549. Although ectopic expression of DOBI does not promote TRAIL death signaling in HeLa cells, knock-down of DOBI expression using shRNA inhibited TRAIL death signaling. DOBI is cleaved into a 54 kD cleaved DOBI during cell death, and the recombinant DOBI protein can be directly cleaved by caspases-3, or -8 in vitro. Together, these data suggest that the cleaved DOBI may acquire a new function, possibly by cooperating with tBid in the mitochondrial event of cell death caused by TRAIL.