DOI QR코드

DOI QR Code

ZFP36L1 and AUF1 Induction Contribute to the Suppression of Inflammatory Mediators Expression by Globular Adiponectin via Autophagy Induction in Macrophages

  • Received : 2018.05.02
  • Accepted : 2018.05.25
  • Published : 2018.09.01

Abstract

Adiponectin, a hormone predominantly originated from adipose tissue, has exhibited potent anti-inflammatory properties. Accumulating evidence suggests that autophagy induction plays a crucial role in anti-inflammatory responses by adiponectin. However, underlying molecular mechanisms are still largely unknown. Association of Bcl-2 with Beclin-1, an autophagy activating protein, prevents autophagy induction. We have previously shown that adiponectin-induced autophagy activation is mediated through inhibition of interaction between Bcl-2 and Beclin-1. In the present study, we examined the molecular mechanisms by which adiponectin modulates association of Bcl-2 and Beclin-1 in macrophages. Herein, we demonstrated that globular adiponectin (gAcrp) induced increase in the expression of AUF1 and ZFP36L1, which act as mRNA destabilizing proteins, both in RAW 264.7 macrophages and primary peritoneal macrophages. In addition, gene silencing of AUF1 and ZFP36L1 caused restoration of decrease in Bcl-2 expression and Bcl-2 mRNA half-life by gAcrp, indicating crucial roles of AUF1 and ZFP36L1 induction in Bcl-2 mRNA destabilization by gAcrp. Moreover, knock-down of AUF1 and ZFP36L1 enhanced interaction of Bcl-2 with Beclin-1, and subsequently prevented gAcrp-induced autophagy activation, suggesting that AUF1 and ZFP36L1 induction mediates gAcrp-induced autophagy activation via Bcl-2 mRNA destabilization. Furthermore, suppressive effects of gAcrp on LPS-stimulated inflammatory mediators expression were prevented by gene silencing of AUF1 and ZFP36L1 in macrophages. Taken together, these results suggest that AUF1 and ZFP36L1 induction critically contributes to autophagy induction by gAcrp and are promising targets for anti-inflammatory responses by gAcrp.

Keywords

References

  1. Blackshear, P. J. (2002) Tristetraprolin and other CCCH tandem zincfinger proteins in the regulation of mRNA turnover. Biochem. Soc. Trans. 30, 945-952. https://doi.org/10.1042/bst0300945
  2. Dalamaga, M., Diakopoulos, K. N. and Mantzoros, C. S. (2012) The role of adiponectin in cancer: a review of current evidence. Endocr. Rev. 33, 547-594. https://doi.org/10.1210/er.2011-1015
  3. Denzel, M. S., Scimia, M. C., Zumstein, P. M., Walsh, K., Ruiz-Lozano, P. and Ranscht, B. (2010) T-cadherin is critical for adiponectinmediated cardioprotection in mice. J. Clin. Invest. 120, 4342-4352. https://doi.org/10.1172/JCI43464
  4. Deretic, V., Saitoh, T. and Akira, S. (2013) Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722-737. https://doi.org/10.1038/nri3532
  5. Dodson, R. E. and Shapiro, D. J. (2002) Regulation of pathways of mRNA destabilization and stabilization. Prog. Nucleic Acid Res. Mol. Biol. 72, 129-164.
  6. Funakoshi, Y., Doi, Y., Hosoda, N., Uchida, N., Osawa, M., Shimada, I., Tsujimoto, M., Suzuki, T., Katada, T. and Hoshino, S. (2007) Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev. 21, 3135-3148. https://doi.org/10.1101/gad.1597707
  7. Funderburk, S. F., Wang, Q. J. and Yue, Z. (2010) The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol. 20, 355-362. https://doi.org/10.1016/j.tcb.2010.03.002
  8. Garneau, N. L., Wilusz, J. and Wilusz, C. J. (2007) The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113-126. https://doi.org/10.1038/nrm2104
  9. Glaser, N. D., Lukyanenko, Y. O., Wang, Y., Wilson, G. M. and Rogers, T. B. (2006) JNK activation decreases PP2A regulatory subunit B56alpha expression and mRNA stability and increases AUF1 expression in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 291, H1183-H1192. https://doi.org/10.1152/ajpheart.01162.2005
  10. He, C. and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910
  11. Huang, J. and Brumell, J. H. (2014) Bacteria-autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101-114. https://doi.org/10.1038/nrmicro3160
  12. Ishimaru, D., Ramalingam, S., Sengupta, T. K., Bandyopadhyay, S., Dellis, S., Tholanikunnel, B. G., Fernandes, D. J. and Spicer, E. K. (2009) Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol. Cancer Res. 7, 1354-1366. https://doi.org/10.1158/1541-7786.MCR-08-0476
  13. Ishimaru, D., Zuraw, L., Ramalingam, S., Sengupta, T. K., Bandyopadhyay, S., Reuben, A., Fernandes, D. J. and Spicer, E. K. (2010) Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1). J. Biol. Chem. 285, 27182-27191. https://doi.org/10.1074/jbc.M109.098830
  14. Khakurel, A. and Park, P. H. (2018) Globular adiponectin protects hepatocytes from tunicamycin-induced cell death via modulation of the inflammasome and heme oxygenase-1 induction. Pharmacol. Res. 128, 231-243. https://doi.org/10.1016/j.phrs.2017.10.010
  15. Kim, M. J., Kadayat, T., Um, Y. J., Jeong, T. C., Lee, E. S. and Park, P. H. (2015) Inhibitory effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a chalcone derivative on MCP-1 expression in macrophages via inhibition of ROS and Akt signaling. Biomol. Ther. (Seoul) 23, 119-127. https://doi.org/10.4062/biomolther.2014.127
  16. Kim, M. J., Kim, E. H., Pun, N. T., Chang, J. H., Kim, J. A., Jeong, J. H., Choi, D. Y., Kim, S. H. and Park, P. H. (2017) Globular adiponectin inhibits lipopolysaccharide-primed inflammasomes activation in macrophages via autophagy induction: the critical role of AMPK signaling. Int. J. Mol. Sci. 18, E1275. https://doi.org/10.3390/ijms18061275
  17. Knapinska, A. M., Gratacos, F. M., Krause, C. D., Hernandez, K., Jensen, A. G., Bradley, J. J., Wu, X., Pestka, S. and Brewer, G. (2011) Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol. Cell. Biol. 31, 1419-1431. https://doi.org/10.1128/MCB.00907-10
  18. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884. https://doi.org/10.1038/nature04723
  19. Lee, Y. J., Song, X., Lee, D. H., Dilly, A. K., Lee, Y. S., Choudry, H. A., Kwon, Y. T. and Bartlett, D. L. (2018) Crosstalk between apoptosis and autophagy is regulated by the arginylated BiP/Beclin-1/p62 complex. Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-17-0685 [Epub ahead of print].
  20. Levine, B. and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463-477. https://doi.org/10.1016/S1534-5807(04)00099-1
  21. Levine, B., Mizushima, N. and Virgin, H. W. (2011) Autophagy in immunity and inflammation. Nature 469, 323-335. https://doi.org/10.1038/nature09782
  22. Levine, B., Sinha, S. and Kroemer, G. (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4, 600-606. https://doi.org/10.4161/auto.6260
  23. Li, L., Tan, H., Yang, H., Li, F., He, X., Gu, Z., Zhao, M. and Su, L. (2017) Reactive oxygen species mediate heat stress-induced apoptosis via ERK dephosphorylation and Bcl-2 ubiquitination in human umbilical vein endothelial cells. Oncotarget 8, 12902-12916.
  24. Liu, M. and Liu, F. (2009) Transcriptional and post-translational regulation of adiponectin. Biochem. J. 425, 41-52.
  25. McKnight, N. C. and Zhenyu, Y. (2013) Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr. Pathobiol. Rep. 1, 231-238. https://doi.org/10.1007/s40139-013-0028-5
  26. Mistry, T., Digby, J. E., Desai, K. M. and Randeva, H. S. (2008) Leptin and adiponectin interact in the regulation of prostate cancer cell growth via modulation of p53 and bcl-2 expression. BJU Int. 101, 1317-1322. https://doi.org/10.1111/j.1464-410X.2008.07512.x
  27. Nakayama, H., Nishida, K. and Otsu, K. (2016) Macromolecular degradation systems and cardiovascular aging. Circ. Res. 118, 1577-1592. https://doi.org/10.1161/CIRCRESAHA.115.307495
  28. Oh, H. J., Magar, T. B. T., Pun, N. T., Lee, Y., Kim, E. H., Lee, E. S. and Park, P. H. (2018) YJI-7 suppresses ROS production and expression of inflammatory mediators via modulation of p38MAPK and JNK signaling in RAW 264.7 macrophages. Biomol. Ther. (Seoul) 26, 191-200. https://doi.org/10.4062/biomolther.2016.276
  29. Otake, Y., Sengupta, T. K., Bandyopadhyay, S., Spicer, E. K. and Fernandes, D. J. (2004) Drug-induced destabilization of bcl-2 mRNA: a new approach for inducing apoptosis in tumor cells. Curr. Opin. Investig. Drugs 5, 616-622.
  30. Ouchi, N., Parker, J. L., Lugus, J. J. and Walsh, K. (2011) Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85-97. https://doi.org/10.1038/nri2921
  31. Park, P. H., McMullen, M. R., Huang, H., Thakur, V. and Nagy, L. E. (2007) Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor necrosis factor-alpha (TNF-alpha) expression via ERK1/2 activation and Egr-1 expression: role of TNF-alpha in adiponectin-stimulated interleukin-10 production. J. Biol. Chem. 282, 21695-21703. https://doi.org/10.1074/jbc.M701419200
  32. Perri, A., Vizza, D., Lupinacci, S., Toteda, G., De Amicis, F., Leone, F., Gigliotti, P., Lofaro, D., La Russa, A. and Bonofiglio, R. (2016) Adiponectin secreted by tubular renal cells during LPS exposure worsens the cellular inflammatory damage. J. Nephrol. 29, 185-194. https://doi.org/10.1007/s40620-015-0220-2
  33. Pun, N. T., Subedi, A., Kim, M. J. and Park, P. H. (2015) Globular adiponectin causes tolerance to LPS-induced TNF-alpha Expression via Autophagy Induction in RAW 264.7 macrophages: involvement of SIRT1/FoxO3A axis. PLoS ONE 10, e0124636. https://doi.org/10.1371/journal.pone.0124636
  34. Qi, G. M., Jia, L. X., Li, Y. L., Li, H. H. and Du, J. (2014) Adiponectin suppresses angiotensin II-induced inflammation and cardiac fibrosis through activation of macrophage autophagy. Endocrinology 155, 2254-2265. https://doi.org/10.1210/en.2013-2011
  35. Raineri, I., Wegmueller, D., Gross, B., Certa, U. and Moroni, C. (2004) Roles of AUF1 isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA interference. Nucleic Acids Res. 32, 1279-1288. https://doi.org/10.1093/nar/gkh282
  36. Shibata, R., Sato, K., Pimentel, D. R., Takemura, Y., Kihara, S., Ohashi, K., Funahashi, T., Ouchi, N. and Walsh, K. (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med. 11, 1096-1103. https://doi.org/10.1038/nm1295
  37. Tilija Pun, N. and Park, P. H. (2017) Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: involvement of autophagy and p21/Nrf2 axis. Sci. Rep. 7, 393. https://doi.org/10.1038/s41598-017-00456-6
  38. Tilija Pun, N. and Park, P. H. (2018) Adiponectin inhibits inflammatory cytokines production by Beclin-1 phosphorylation and B-cell lymphoma 2 mRNA destabilization: role for autophagy induction. Br. J. Pharmacol. 175, 1066-1084. https://doi.org/10.1111/bph.14144
  39. Tomas, E., Tsao, T. S., Saha, A. K., Murrey, H. E., Zhang Cc, C., Itani, S. I., Lodish, H. F. and Ruderman, N. B. (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. U.S.A. 99, 16309-16313. https://doi.org/10.1073/pnas.222657499
  40. Wagner, B. J., DeMaria, C. T., Sun, Y., Wilson, G. M. and Brewer, G. (1998) Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics 48, 195-202. https://doi.org/10.1006/geno.1997.5142
  41. Wang, Y., Wang, X., Lau, W. B., Yuan, Y., Booth, D., Li, J. J., Scalia, R., Preston, K., Gao, E., Koch, W. and Ma, X. L. (2014) Adiponectin inhibits tumor necrosis factor-alpha-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ. Res. 114, 792-805. https://doi.org/10.1161/CIRCRESAHA.114.302439
  42. Wang, Z. V. and Scherer, P. E. (2016) Adiponectin, the past two decades. J. Mol. Cell Biol. 8, 93-100. https://doi.org/10.1093/jmcb/mjw011
  43. Zekavati, A., Nasir, A., Alcaraz, A., Aldrovandi, M., Marsh, P., Norton, J. D. and Murphy, J. J. (2014) Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS ONE 9, e102625. https://doi.org/10.1371/journal.pone.0102625
  44. Zhao, W., Li, Y., Jia, L., Pan, L., Li, H. and Du, J. (2014) Atg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin II. Free Radic. Biol. Med. 69, 108-115. https://doi.org/10.1016/j.freeradbiomed.2014.01.002
  45. Zhou, C., Vignere, C. Z. and Levitan, E. S. (2008) AUF1 is upregulated by angiotensin II to destabilize cardiac Kv4.3 channel mRNA. J. Mol. Cell. Cardiol. 45, 832-838. https://doi.org/10.1016/j.yjmcc.2008.08.004

Cited by

  1. Autophagy induction: a critical event for the modulation of cell death/survival and inflammatory responses by adipokines pp.1976-3786, 2018, https://doi.org/10.1007/s12272-018-1082-7
  2. Diphlorethohydroxycarmalol Attenuates Fine Particulate Matter-Induced Subcellular Skin Dysfunction vol.17, pp.2, 2019, https://doi.org/10.3390/md17020095
  3. m6A Reader YTHDF2 Regulates LPS-Induced Inflammatory Response vol.20, pp.6, 2019, https://doi.org/10.3390/ijms20061323