• Title/Summary/Keyword: knee joint motion

Search Result 522, Processing Time 0.026 seconds

Effect of Kinematic Motion on Changes in Coefficients of Friction of Porcine Knee Joint Cartilage (기구학적 운동이 돼지 무릎 관절연골의 마찰계수 변화에 미치는 영향)

  • Kim, Hwan;Kim, ChoongYeon;Lee, KwonYong;Kim, DaeJoon;Kim, DoHyung
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • In this study, the frictional behaviors of articular cartilage against a Co-Cr alloy in two types of kinematic motions were compared. Cartilage pins were punched from the femoral condyles of porcine knee joints, and Co-Cr alloy disks were machined from orthopedic-grade rods and polished to a surface roughness ($R_a$) of 0.002. Friction tests were conducted by using a pin-on-disk-type tribotester in phosphate buffered saline (PBS) under pressures of 0.5, 1, and 2 MPa. All tests were performed in the repeat pass rotational (ROT) and the linear reciprocal (RCP) sliding motions with the same sliding distance and speed of 50 mm/s. The coefficients of friction of the cartilage against the Co-Cr alloy increased with the sliding time in both kinematic motions for all contact pressures. The maximum coefficients of friction in RCP motion were 1.08, 2.82, and 1.96 times those in ROT motion for contact pressures of 0.5, 1, and 2 MPa, respectively. As the contact pressure increased, the coefficients of friction gradually increased in RCP motion, whereas they decrease and then increased in ROT motion. The interaction between the directional change of the shear stress and the orientation of collagen fiber in the superficial layer of the cartilage could affect the change in the frictional behaviors of the cartilage. A large difference in the coefficients of friction between the two kinematic motions could be interpreted as differences in the directional change of shear stress at the contact surface.

Joint Position Effects on Biceps Femoris and Peroneal Muscle Activation and Ankle Evertor Strength

  • Do-eun Lee;Jun-hee Kim;Seung-yoon Han;Oh-yun Kwon
    • Physical Therapy Korea
    • /
    • v.31 no.2
    • /
    • pp.114-122
    • /
    • 2024
  • Background: The peroneus longus (PL) and peroneus brevis (PB) function as the primary muscles of eversion, a movement closely associated with tibial external rotation for ankle mortise stability. Ankle motion and tibial rotation vary based on different ankle and knee positions. Objects: This study aimed to investigate the PL, PB, and biceps femoris (BF) muscle activation and eversion strength during side-lying isometric eversion exercise based on different ankle positions (neutral [N] and plantarflexion [PF]) and knee positions (90° flexion [KF] and extension [KE]). Methods: Thirty healthy adults with an Ankle Joint Functional Assessment Tool score of ≥ 22 were recruited (mean age = 24.8 ± 3.1 years). Maximal isometric eversion strength and submaximal muscle activation of the PL, PB and BF were measured during isometric eversion exercise in side-lying. A 2 × 2 repeated measures analysis of variance was performed to investigate differences in muscle activation and strength. Results: The PL and PB muscle activation showed significant main effects with the knee and ankle positions (p < 0.05); activation was greater in the KE and PF positions than in the KF and N positions. The BF muscle activation showed a significant interaction effect with knee and ankle positions, which was greater in knee extension and ankle plantarflexed (KEPF) position than in knee flexion and ankle plantarflexed (KFPF) position (p < 0.05). Eversion strength showed a significant main effect only in ankle position (p < 0.05) and was greater in the N position than in the PF position. Conclusion: The results of this study indicate that the KEPF position can be recommended to facilitate contraction of the PL and PB during side-lying eversion exercise. Furthermore, the effects of the knee-ankle positions should be considered for measuring ankle eversion strength and implementing the isometric submaximal side-lying eversion exercise.

Evaluation of Accuracy and Inaccuracy of Depth Sensor based Kinect System for Motion Analysis in Specific Rotational Movement for Balance Rehabilitation Training (균형 재활 훈련을 위한 특정 회전 움직임에서 피검자 동작 분석을 위한 깊이 센서 기반 키넥트 시스템의 정확성 및 부정확성 평가)

  • Kim, ChoongYeon;Jung, HoHyun;Jeon, Seong-Cheol;Jang, Kyung Bae;Chun, Keyoung Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.228-234
    • /
    • 2015
  • The balance ability significantly decreased in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of improving balance ability using real-time systems, but it is limited by the expensive test equipment and specialized resources. Recently, Kinect system based on depth data has been applied to address these limitations. Little information about accuracy/inaccuracy of Kinect system is, however, available, particular in motion analysis for evaluation of effectiveness in rehabilitation training. Therefore, the aim of the current study was to evaluate accuracy/inaccuracy of Kinect system in specific rotational movement for balance rehabilitation training. Six healthy male adults with no musculoskeletal disorder were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in directions of AP (anterior-posterior), ML (medial-lateral), right and left diagonal direction. The dynamic motions of the subjects were measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras for comparative evaluation. The results of the error rate for hip and knee joint alteration of Kinect system comparison with infrared camera based motion capture system occurred smaller values in the ML direction (Hip joint: 10.9~57.3%, Knee joint: 26.0~74.8%). Therefore, the accuracy of Kinect system for measuring balance rehabilitation traning could improve by using adapted algorithm which is based on hip joint movement in medial-lateral direction.

Effect of Aquatic Exercise Program on Lower Limbs, Muscle Strength, Knee Joint Flexion and Pain Changes of Arthritis Patients (수중운동이 관절염 환자의 하지근력, 관절각도 및 통증에 미치는 영향)

  • Lee, Young-Ok;Choi, Myung-Han;Kim, Jong-Im;Lee, Tae-Yong
    • Journal of muscle and joint health
    • /
    • v.5 no.2
    • /
    • pp.222-237
    • /
    • 1998
  • In an attempt to investigate the effect of long-term aquatic exercise program on lower limbs' muscle strength, knee Joint flexion, pain reduction and weight changes with aquatic exercise program. Forty three women with arthritis were pre and post tested for changes of muscle strength, range of motion, weight and pain. This data was collected from April 1, 1997 to February 24, 1998. The mean age was 52.5. Statistically significant in lower limbs' muscle strength with an aquatic exercise program by age, BMI, education, rheumatic drug use, illness duration until 12 weeks after experiment. Statistically significant in knee joint flexion with aquatic exercise program by age, BMI, education, rheumatic drug use, illness duration until 12 weeks after experiment. Statistically significant in pain reduction with aquatic exercise program by age, BMI, education, rheumatic drug use, illness duration until 12 weeks after experiment. Statistically significant in weight changes with aquatic exercise program by age, BMI, education, rheumatic drug use, illness duration until 6 weeks after experiment. As a conclusion, aquatic exercise programs for the patients with arthritis require at least 12 weeks and a variety of aquatic exercise programs for the effective control should be developed.

  • PDF

Effect of Joint Kinetics and Coordination on the Within-Individual Differences in Maximum Vertical Jump (관절 역학과 협응이 최대 수직 점프의 개인내 수행차에 미치는 영향)

  • Kim, Yong-Woon;Seo, Jung-Suk;Han, Dong-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.305-314
    • /
    • 2012
  • The purpose of this study was to investigate the effects of joint kinetics and coordination on within-individual differences in maximum vertical jump. 10 male subjects aged 20 to 30 performed six trials in maximum vertical jump and with based on jump height the good(GP) and bad(BP) performances for each subject were compared on joint kinetics of lower extremity and coordination parameters such as joint reverse and relative phase. The results showed that maximum moment, power, and work done of hip joint and maximum moment of ankle joint in GP were significantly higher than that in the BP but no significant differences for the knee joint. We could observe a significant difference in joint reverse timing between both conditions. And also the relative phase on ankle-knee and ankle-hip in GP were significantly lower than that in the BP, which means that in GP joint movements were more in-phase synchronized mode. In conclusion, mechanical outputs of hip and ankle joints had an effect on within-individual differences in vertical jump and the inter-joint coordination and coordination including sequence and timing of joint motion also might be high influential factors on the performances within individual.

Biomechanical Alterations in the Lower limb Joints during the Punching Motion of Elderly Women after 12-Weeks of Taekwonaerobics Training (여성노인의 태권에어로빅스 12주 훈련 후 몸통지르기 동작시 하지관절의 생체역학적 변화)

  • Yoo, Sil
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.637-645
    • /
    • 2009
  • The purpose of this study was to investigate the biomechanical alterations in the punching motion of 10 elderly women after 12 weeks of taekwonaerobics training. Seven infrared cameras(Qualisys MCU-240) and 2 force platforms(Kistler-9286AA) were used to acquire raw data. The results were as follows. First, the minimum joint angles of the lower limbs had a statistically significant difference between both the dorsiflexion/plantar flexion(1eft, $p=0.001^*$) and the inversion/eversion(both, $p=0.009^*$, $p=0.04^*$) from the ankle angle. There were differences in abduction/adduction(left, $p=0.04^*$) from the knee angle, as well as internal/external rotation(both, $p=0.07^*$, $p=0.02^*$) from the hip angle. Second, the maximum resultant joint moments of the lower limbs had statistically significant differences in the inversion/eversion moment from the ankle joint(both, $p=0.05^*$, $p=0.05^*$), the abduction/adduction moment(left, $p=0.08^*$) from the knee joint, and the internal/external rotation moment(right, $p=0.09^*$) from the hip joint. Third, the maximum resultant joint powers of the lower limbs had a statistically significant difference both in flexion/extension joint powers(both, $p=0.05^*$, $p=0.01^*$) and in abduction/adduction(both, $p=0.02^*$, $p=0.00^*$) from the hip joint, as well as abduction/adduction(left, $p=0.00^*$) from the knee joint, In conclusion, the elderly women were somewhat changed after 12 weeks of taekwonaerobics training.

Effect of Toe Headings on the Biomechanics of Knee Joint in Drop Landing (드롭 랜딩에서 발끝자세가 무릎관절 운동역학에 미치는 영향)

  • Joo, Ji-Yong;Kim, Young-Kwan;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • The purpose of this study was to investigate the effect of the toe headings on the biomechanics of knee joint in drop landing in an attempt to find the potential risk of non-contact anterior cruciate ligament (ACL) injury. Seventeen male college students ($20.5{\pm}1.1$ yrs; $175.2{\pm}6.4$ cm; $68.8{\pm}5.8$ kg), having no neuromuscular injury within an year, participated in this study. Three different toe headings such as toe-in (TI), neutral (N), and toe-out (TO) positions were tested. Motion capturing system consisting of eight high speed cameras and two force platforms were used to collect three-dimensional motion data and ground reaction force data during landing. Results indicated joint angles and peak joint moments were significantly affected by the toe headings. TI position produced larger valgus angle due to reduce knee distance in addition to higher flexion and valgus moment than other positions, which was somewhat vulnerable to the potential risk of non-contact ACL injury. TO position caused the largest internal rotation angle with smaller joint moments. Therefore, it is recommended that athletes need to land on the ground with neutral toe-heading position as possible in order to minimize the potential risk of non-contact ACL injury.

KNEE: Basic Science and Injury of Bone (슬관절 주위 글격의 기초과학 및 스포츠 손상)

  • Kim Hee-Chun
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 2003
  • Purpose: The biomechanics and kinematics of knee joint were reviewed in this article. And then the common sports injuries were presented. Anatomy and Kinetics: None of the pairs of bearing surfaces in the knee joint is exactly congruent This allows the knee six degrees of freedom of motion. Tibiofemoral Kinematics: In flexion and extension, the axis of motion is not perpendicular to the medial-lateral plane of the joint, nor is it perpendicular to the axis of longitudinal rotation. This results in coupled varus angulation and internal rotation with flexion and in valgus angulation and external rotation with extension. Patellofemoral Articulation: Loads across the patellofemoral joint are indirectly related to the angle of knee flexion and directly related to the force generated within the quadriceps mechanism. Fractures of the Patella: Nonoperative treatment is indicated if the extensor mechanism is intact and if displacement of fragment is minimal. The specific type of internal fixation depends on the fracture pattern. It is important to repair retinaculum. Acute and Recurrent Patellar Instability: The degree of dysplasia and the extent of the instability play a large part in determining the success of nonoperative treatment. Patients who experience recurrent dislocations and patients with major anatomic variations require surgery to minimize their instability. Sports Injuries in School-age Atheletes: Patellar pain in young athletes groups a number of conditions, including Idiopathic Adolescent Anterior Knee Pain, Osgood- Schlatter Disease, and Sinding-Larsen-Johansson Disease.

  • PDF

Kinematic Analysis of Lower Extremities during Staris and Ramp Walking with Hemiplegic Patients (편마비 환자의 계단과 경사로 보행 동안 하지의 운동학적 분석)

  • Cheon, Dong-Whan
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.5
    • /
    • pp.297-302
    • /
    • 2013
  • Purpose: This study was conducted in order to investigate the kinematic gait parameter of lower extremities with different gait conditions (level walking, stair, ramp) in hemiplegic patients. Methods: Ten hemiplegic patients participated in this study and kinematic data were measured using a 3D motion analysis system (LUKOtronic AS202, Lutz-kovacs-Electronics, Innsbruk, Austria). Statistical analysis was performed using one-way repeated measure of ANOVA in order to determine the difference of lower extremity angle at each gait phase with different gait conditions. Results: Affected degree of ankle joint in the heel strike phase showed significant difference between level walking and climbing stairs, and toe off phase showed significant difference between level walking and climbing stairs, ramps, and climbing stairs. Affected degree of knee joint showed no significant difference in all attempts. Affected degree of hip joint in the toe off phase showed significant difference between level walking, ramps and stairs, and climbing ramps. Swing phase showed significant difference between sides for level walking and stairs, climbing ramps. Affected ankle joint of heel strike and toe off, and affected hip joint of toe off and the maximum angle of swing phase in the angle was increased. Unaffected side of the ankle joint, knee joint, and hip joint showed a significant increase in walking phase. Conclusion: These findings indicate that compared with level walking, different results were obtained for joint angle of lower extremity when climbing stairs and ramps. In hemiplegia patient's climbing ramps, stairs, more movement was observed not only for the non-affected side but also the ankle joint of the affected side and hip joint. According to these findings of hemiplegic patients when climbing stairs or ramps, more joint motion was observed not only on the unaffected side but also on the affected side compared with flat walking.

Intra-articular Synovial Hemangioma of the Knee - A Case Report - (슬관절의 관절내 활액막 혈관종 - 증례 보고 -)

  • Kim, Jin-Wan;Cho, Hyung-Lae;Ku, Jung-Hoei;Ko, Young-Chul;Hong, Seong-Hwak
    • Journal of the Korean Arthroscopy Society
    • /
    • v.10 no.1
    • /
    • pp.91-94
    • /
    • 2006
  • Synovial hemangioma of the knee joint has been reported as a rare cause of pain, limitation of motion and hemarthrosis, often seen as an internal derangement of the knee. A 39-year-old woman presented with spontaneous hemarthrosis of the left knee joint and physical exam revealed a small painful mass adjacent to the medial side of the patella. Magnetic resonance imaging revealed an intra-articular tumor. Arthroscopic excision was performed and the histology was characteristic of hemangioma. Through this case, we discuss the diagnosis and treatment options for the synovial hemangioma of the knee.

  • PDF