• Title/Summary/Keyword: kinematic positioning

Search Result 210, Processing Time 0.027 seconds

Real Time Alarm System of Enormous Structure Using RTK GPS (RTK GPS를 이용한 대형구조물의 실시간 경보 시스템)

  • 박운용;송연경;이현우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2004
  • Such social structures as bridges,, buildings, dams and towers have been transformed by their own load or fundamental ground. They have been behaved by other external causes. These regular or irregular behaviors threaten to do their users safety. Therefore, to monitor the load of the structures or reaction shown by them could help to verify their behaviors. RTK GPS allows the use of a static base station and remote rover unit to allow f3r data collection within several seconds and in real time. It is useful for monitoring the behaviors of massive structures like bridges. In this Study, Among GPS methods, we used RTK GPS to analyze the precision of monitoring and then on the basis of it, we developed a monitoring system using RTK GPS when measured the behavior of main tower of a suspension bridge by using RTK GPS. Comparing a deviation between observation values, X axis was Imm, Y axis was 1mm and Z axis 2.2mm. It turned out that it was possible to monitor and measure structures by RTK GPS.

Production of A Plane Figure of Campus with RTK GPS and TS (RTK GPS측량과 토탈스테이션에 의한 교내 평면도 제작)

  • Lee, In-Su;Lee, Kee-Boo;Park, Woon-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.69-76
    • /
    • 2002
  • Nowadays information is very important for Civil Engineering. This information is acquiredmostly via Surveying & Geo-spatial Information System. Also this information is close to the ITS(Intelligent Transformation System), Navigation, Facility Management, and Digital Mapping, etc and applicable to versatile fields from now on. And in surveying fields, GPS satellites are introduced newly and play a great rules. In this study, RTK(Real-Time Kinematic GPS), one of the positioning technology with GPS satellites, is used for the production of Plane Figure of Campus. The results shows that it is possible to extract the information for some part of a flowerbed and road, but not so for the buildings surrounded. Therefore this give occasion to the a lowering of work effectiveness over the total work-flow. So at such a time, it will be expected that the supplementary systems such TS(Total Station), Plane-table, and theodolite, etc have to be used.

  • PDF

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

Thematic Map Construction of Erosion and Deposition in Rivers Using GIS-based DEM Comparison Technique

  • Han, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.153-159
    • /
    • 2016
  • Rivers refer to either natural or artificial structures whose primary functions are flood control and water conservation. Due to recent localized torrential downpours led by climate change, large amounts of eroded soil have been carried away, forming deposits downstream, which in turn degrades the capacity to fulfill these functions. To manage rivers more effectively, we need data on riverbed erosion and deposition. However, environmental factors make it challenging to take measurements in rivers, and data errors tend to prevent researchers from grasping the current state of erosions and deposits. In this context, the aim of the present study is to provide basic data required for river management. To this end, the author made annual measurements with a Real-time Kinematic-Global Positioning System (RTK-GPS) and a total station in Pats Cabin Canyon, Oregon, United States, and also prepared thematic maps of erosion and deposition thickness as well as water depth profiles based on a GIS spatial analysis. Furthermore, the author statistically analyzed the accuracy of three dimensional (3D) measurement points and only used the data that falls within two standard deviations (i.e. ±2σ). In addition, the author determined a threshold for a DEM of Difference (DoD) by installing measurement points in the rivers and taking measurements, and then estimated erosion and deposition thickness within a confidence interval of ±0.1m. Based on the results, the author established reliable data on river depth profiles and thematic maps of erosion and deposition thickness using pre-determined work flows. It is anticipated that the riverbed data can be utilized for effective river management.

Development of Automated Guidance Tracking Sensor System Based on Laser Distance Sensors

  • Kim, Joon-Yong;Kim, Hak-Jin;Shim, Sung-Bo;Park, Soo-Hyun;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.319-327
    • /
    • 2016
  • Purpose: Automated guidance systems (AGSs) for mobile farm machinery have several advantages over manual operation in the crop production industry. Many researchers and companies have tried to develop such a system. However, it is not easy to evaluate the performance of an AGS because there is no established device used to evaluate it that complies with the ISO 12188 standard. The objective of this study was to develop a tracking sensor system using five laser distance measurement sensors. Methods: One sensor-for long-range distance measurement-was used to measure travel distance and velocity. The other four sensors-for mid-range distance measurement-were used to measure lateral deviation. Stationary, manual driving, and A-B line tests were conducted, and the results were compared with the real-time kinematic differential global positioning system (RTK-DGPS) signal used by the AGS. Results: For the stationary test, the average error of the tracking sensor system was 1.99 mm, and the average error of the RTK-DGPS was 15.19 mm. For the two types of driving tests, the data trends were similar. A comparison of the changes in lateral deviation showed that the data stability of the developed tracking system was better. Conclusions: Although the tracking system was not capable of measuring long travel distances under strong sunlight illumination because of the long-range sensor's limitations, this dilemma could be overcome using a higher-performance sensor.

Availability Assessment of Single Frequency Multi-GNSS Real Time Positioning with the RTCM-State Space Representation Parameters (RTCM-SSR 보정요소 기반 1주파 Multi-GNSS 실시간 측위의 효용성 평가)

  • Lee, Yong-Chang;Oh, Seong-Jong
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.107-123
    • /
    • 2020
  • With stabilization of the recent multi-GNSS infrastructure, and as multi-GNSS has been proven to be effective in improving the accuracy of the positioning performance in various industrial sectors. In this study, in view that SF(Single frequency) GNSS receivers are widely used due to the low costs, evaluate effectiveness of SF Real Time Point Positioning(SF-RT-PP) based on four multi-GNSS surveying methods with RTCM-SSR correction streams in static and kinematic modes, and also derive response challenges. Results of applying SSR correction streams, CNES presented good results compared to other SSR streams in 2D coordinate. Looking at the results of the SF-RT-PP surveying using SF signals from multi-GNSS, were able to identify the common cause of large deviations in the altitude components, as well as confirm the importance of signal bias correction according to combinations of different types of satellite signals and ionospheric delay compensation algorithm using undifferenced and uncombined observations. In addition, confirmed that the improvement of the infrastructure of Multi-GNSS allows SF-RT-SPP surveying with only one of the four GNSS satellites. In particular, in the case of code-based SF-RT-SPP measurements using SF signals from GPS satellites only, the difference in the application effect between broadcast ephemeris and SSR correction for satellite orbits/clocks was small, but in the case of ionospheric delay compensation, the use of SBAS correction information provided more than twice the accuracy compared to result of the Klobuchar model. With GPS and GLONASS, both the BDS and GALILEO constellations will be fully deployed in the end of 2020, and the greater benefits from the multi-GNSS integration can be expected. Specially, If RT-ionospheric correction services reflecting regional characteristics and SSR correction information reflecting atmospheric characteristics are carried out in real-time, expected that the utilization of SF-RT-PPP survey technology by multi-GNSS and various demands will be created in various industrial sectors.

Study On Generating Compact Network RTK Corrections Considering Ambiguity Level Adjustment Among Reference Station Networks for Constructing Infrastructure of Land Vehicle (육상교통 인프라 구축을 위한 다중 네트워크 간 미지정수 수준 조정이 고려된 Compact Network PTK 보정정보 생성기법 연구)

  • Song, June-Sol;Park, Byung-Woon;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.404-412
    • /
    • 2013
  • Network RTK is widely used especially for static applications so far, however, the demand for high accuracy positioning for kinetic users such as land vehicles is growing for safety and convenience reasons. Kinematic users move along the roads and the network where they receive corrections can be changed. Compact Network RTK corrections should keep consistency while network change. In this paper, we introduced a method of generating Compact Network RTK corrections considering network ambiguity level adjustment by formulation of corrections. We verified the proposed method for reference station networks across whole country. We also generated Compact Network RTK corrections using simulation and real GPS data from reference stations in South Korea and evaluated performance of users. As a result, the discontinuity between corrections from two networks reduced to 0.25 cycle from several cycles. And user could achieve less than 8 cm (2DRMS) horizontal position accuracy continuously regardless of network change.

DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

  • Jang, You Hyun;Kim, Jong Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

Design and Implementation of Mobile Phone Interface Module for DGPS Correction Message Transmission (DGPS 보정신호 전송을 위한 휴대전화 인터페이스 모듈의 설계 및 구현)

  • Yi, Jae-hoon;Kim, Chang-Soo;Jeong, Seong-Hoon;Lee, Tae-Oh;Yun, Hee-Chul;Yim, Jae-Hong
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.419-426
    • /
    • 2002
  • The conventional RTK-GPS technique has many problems which are permission using RF wireless modem, influence of geographic obstacle using radio wave, frequency interference, finiteness of frequency resources. To solve these problems, in this paper, we designed the DGPS correction message transmission system as a method to substitute the RF wireless modem of RTK-DGPS receiver. Then the interface module was designed and implemented for linkage of GPS receiver and mobile phone. As a result worked differential surveying using receiving correction message using RS-232C and communication control, users of mobile station were worked differential surveying correction between mobile phones. Interface module system was received the same result of precision which was compared RF wireless modem system.

Elevation Water Stage Accuracy Analysis for Quality Improvement of Water Stage data (수위자료 품질향상을 위한 해발수위 정확도 분석)

  • Lee, Chung-Dae;Kim, Jeong-Yup;Chol, Hyuk-Joon;Kim, Chi-Young;Cho, Hyo-Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.691-695
    • /
    • 2012
  • 수위표의 영점에서 수면까지의 높이로 정의되는 해발수위는 유량 및 유사량 등과 같은 관련 수문자료를 생산하는데 기본이 되는 자료이며, 하천 및 수공구조물의 설계 등에 기초자료로 이용될 뿐만 아니라 수자원의 효율적인 관리 및 수문순환 해석을 위한 가장 중요한 기초자료로서 국가 차원의 올바른 수자원 계획과 정책을 수립하는데 널리 활용된다. 이와 같이 해발수위자료의 이용 분야가 다양하고 그 자체로서도 중요한 의미를 가지는 점을 고려할 때 무엇보다도 중요한 것은 자료의 품질이 확보되어야 하는 것이다. 그러나 영점표고검정수준점 및 기준 수위표의 설치 이후 오랜 시간이 경과됨에 따라 노후화와 수위관측소 주변의 환경변화가 발생하게 되어 자료의 정확도가 매우 낮아지고 있다. 본 연구에서는 해발수위 자료의 품질향상을 위해 수위관측소의 영점표고검정수준점 및 수위표 영점표고에 대하여 수준측량 및 RTK(Real Time Kinematic) GPS(Global Positioning System) 측량을 병행하여 수행하였으며, 조사측량된 값을 활용하여 기존에 측량된 영점표고검정수준점 및 수위표 영점표고에 대한 검토를 수행하였다. 금강 및 삽교천 수계에 위치한 50개 수위관측소 대하여 기존 측량값과 비교 검토한 결과 영점표고검정수준점은 0.10m 이하(54.0%), 0.10m 초과 ~ 0.50m 이하(26.0%), 0.50m 초과 ~ 1.00m 이하(6.0%), 1.00m초과 ~ 1.50m 이하(2.0%), 1.50m 초과 ~ 2.00m 이하(2.0%), 2.00m 초과 ~ 3.00m 이하(4.0%), 3.00m 초과(6.0%)의 값을 나타냈으며, 수위표 영점표고는 0.10m 이하(50.0%), 0.10m 초과 ~ 0.50m 이하(32.0%), 0.50m 초과 ~ 1.00m 이하(10.0%), 1.00m초과 ~ 1.50m 이하(2.0%), 1.50m 초과 ~ 2.00m 이하(2.0%), 2.00m 초과 ~ 3.00m 이하(2.0%), 3.00m 초과(2.0%)의 값을 가졌다. 이와 같이 기존과 금회 측량자료를 비교 검토한 결과 대부분이 안정적으로 유지되고 있으나 일부 수위관측소에서 변동량이 크게 발생한 원인은 영점표고검정수준점의 노후화, 기준 수위표의 교체 및 위치 변동, 인위적인 하천공사 등으로 인하여 발생한 것으로 판단된다.

  • PDF