• Title/Summary/Keyword: kinematic motion

Search Result 849, Processing Time 0.031 seconds

Motion Characteristic Capturing : Example Guided Inverse Kinematics (동작 특성 추출 : 동작 모방에 기초한 향상된 역 운동학)

  • 탁세윤
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.147-151
    • /
    • 1999
  • This paper extends and enhances the existing inverse kinematics technique using the concept of motion characteristic capturing. Motion characteristic capturing is not about measuring motion by tracking body points. Instead, it starts from pre-measured motion data, extracts the motion characteristics, and applies them in animating other bodies. The resulting motion resembles the originally measured one in spite of arbitrary dimensional differences between the bodies. Motion characteristics capturing is a new principle in kinematic motion generalization to process measurements and generate realistic animation of human being or other living creatures.

  • PDF

Generalized Kinematic Analysis for the Motion of 3-D Linkages using Symbolic Equation (기호방정식을 이용한 3차원 연쇄기구 운동해석의 일반화)

  • 김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.102-109
    • /
    • 1986
  • Based on the Hartenberg-Denavit symbolic equation, which is one of equations for the kinematic analysis of three dimensional (3-D) linkage, a generalized kinematic motion equation is derived utilizing Euler angles and employing the coordinates transformation. The derived equation can feasibly be used for the motion analysis of any type of 3-D linkages as well as 2-D ones. In order to simulate the general motion of 3-D linkgages on digital computer, the generalized equation is programmed through the process of numerical analysis after converting the equation to the type of Newton-Raphson formula and denoting it in matrix form. The feasibility of theoretically derived equation is experimentally proved by comparing the results from the computer with those from experimental setup of three differrent but generally empolyed 3-D linkages.

Failure recoverability by exploiting kinematic redundancy

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.77-82
    • /
    • 1996
  • This paper is concerned with how to utilize kinematic redundancy to reconstruct the inverse kinematic solution which is not attainable due to hardware limitations. By analyzing the error due to hardware limitations, we are to show that the recoverability of limitation reduces to the solvability of a reconstruction equation under the feasibility condition. It will be next shown that the reconstruction equation is solvable if the configuration is not a joint-limit singularity. The reconstruction method will be proposed based on the geometrical analysis of recoverability of hardware limitations. The method has the feature that no task motion error is induced by the hardware limitations while minimizing a possible null motion error, under the recoverability assumed.

  • PDF

Kinematic Modeling for Position Feedback Control of an 2 - D.O.F Wheeled Mobile Robot (2-자유도 이동 로보트의 위치 궤환제어를 위한 기구학 모델링)

  • 정용욱;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.27-40
    • /
    • 1996
  • This paper proposed a kinematic modeling methodlogy and feedback control system based on kinematics for 2 degrees of freedom of 4-wheeled mobile robot. We assigned coordinate systems to specify the transformation matirx and write the kinematic equation of motion. We derived the actuated inverse and sensed forwared solution for the calculation of actual robot orientation and the desired robot orientation. It is the most significant error and has the largest impact on the motion accuracy. To calculate the WMR position in real time, we introduced the dead-reckoning algorithm and composed two feedback control system that is based on kinematics. Through the simulation result, we compare with the ffedback control system for position control.

  • PDF

Kinematic Modeling and Analysis of Silicon Wafer Grinding Process (실리콘 웨이퍼 연삭 가공의 기구학적 모델링과 해석)

  • 김상철;이상직;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.42-45
    • /
    • 2002
  • General wheel mark in mono-crystalline silicon wafer finding is able to be expected because it depends on radius ratio and angular velocity ratio of wafer and wheel. The pattern is predominantly determined by the contour of abrasive grits resulting from a relative motion. Although such a wheel mark is made uniform pattern if the process parameters are fixed, sub-surface defect is expected to be distributed non-uniformly because of characteristic of mono-crystalline silicon wafer that has diamond cubic crystal. Consequently it is considered that this phenomenon affects the following process. This paper focused on kinematic analysis of wafer grinding process and simulation program was developed to verify the effect of process variables on wheel mark. And finally, we were able to predict sub-surface defect distribution that considered characteristic of mono-crystalline silicon wafer

  • PDF

Development of Three D.O.F. Parallel Manipulator for Micro-motion (미세구동을 위한 3자유도 병렬식 매니퓨레이터 개발에 관한 연구)

  • 이계영;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1067-1070
    • /
    • 1995
  • In this paper, we have treated the modeling and development of three degree of freedom parallel manipulator for micromotion based on the Stewart platform type parallel structure. the kinematic modeling was derived from the relation between base coordinate and platform anr the dynamic modeling was from the method of Kinematic Influence Coefficients(KIC) and transferring of the generalized coordinates. Using this method, we presented the method to choose the actuator and joint by investigating the actuating forces needed when the manipulator moves along the given trajectory. In the end, the prototype manipulator was developmented and evaluated.

  • PDF

On the Singularities of Optimality Constraint-based Resolved Motion Methods for a Redundant Manipulator (여유 자유도 매니퓰레이터를 위한 지적 제한 조건을 기반으로 한 Resolved Motion 방법의 특이점에 관한 연구)

  • Cho, Dong-Kwon;Choi, Byoung-Wook;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.386-390
    • /
    • 1992
  • Algorithmic or kinematic singularities are inevitably a introduced if optimality criteria or augmented kinematic equations are used to resolve the redundancy of almost any manipulator with rotary joints. In this paper, a sufficient condition for a singularity-free optimal solution of the kinematic control of a redundant manipulator is derived and, specifically, algorithmic singularities are analyzed for optimality-based methods. A singularity-free space (SFS) to characterize the performance of a secondary task for a redundant manipulator using the sufficient condition for a redundant manipulator is defined. The SFS is a set of regions classified by the loci of configurations satisfying the inflection condition for manipulability measure in the Configuration space. Using SFS, the topological property of the Configuration space and the invertible workspace without singularities are analyzed.

  • PDF

A Study on the Polishing Characteristics of LCD Glass (LCD 유리기판 폴리싱 가공특성에 관한 연구)

  • Lee, Sang-Min;Lee, Choong-Seok;Chae, Seung-Su;Kim, Taeck-Su;Park, Hwi-Keun;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2009
  • This paper reports a kinematic analysis and experimental results for the polishing process of G7 LCD glass. A kinematic analysis for the relative motion of the upper plate and lower plate has been done and computer simulation has been programmed. A series of polishing experiments has also been carried out and compared with analytical data. The experimental results agreed well with analytical ones. The experimental results indicate that the polishing removal is proportional to the relative speed and pressure.

  • PDF

A Study of Human Model Based on Dynamics (동력학기반 인체 모델 연구)

  • 김창희;김승호;오병주
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.485-493
    • /
    • 1999
  • Human can generate various posture and motion with nearly 350 muscle pairs. From the viewpoint of mechanisms, the human skeleton mechanism represents great kinematic and dynamical complexity. Physical and behavioral fidelity of human motion requires dynamically accurate modeling and controling. This paper describes a mathematical modeling, and dynamic simulation of human body. The human dynamic model is simplified as a rigid body consisting of 18 actuated degrees of freedom for the real time computation. Complex kinematic chain of human body is partitioned as 6 serial kinematic chains that is, left arm, right arm, support leg, free leg, body, and head. Modeling is developed based on Newton-Euler formulation. The validity of proposed dynamic model, which represents mathematically high order differential equation, is verified through the dynamic simulation.

  • PDF

A Study on the Subtask Performance Using Measure Constraint Locus for a Redundant Robot (여유자유도 로봇에 있어서 성능지수 제한궤적을 이용한 부작업의 성능에 관한 연구)

  • 최병욱;원종화;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.761-770
    • /
    • 1991
  • This paper suggests a measure constraint locus for characterization of the performance of a subtask for a redundant robot. The measure constraint locus are the loci of points satisfying the necessary constraint for optimality of measure in the joint configuration space. To uniquely obtain an inverse kinematic solution, one must consider both measure constraint locus and self-motion manifolds which are set of homogeneous solutions. Using measure constraint locus for maniqulability measure, the invertible workspace without singularities and the topological property of the configuration space for linding equilibrium configurations are analyzed. We discuss some limitations based on the topological arguments of measure constraint locus, of the inverse kinematic algorithm for a cyclic task. And the inverse kinematic algorithm using global maxima on self-motion manifolds is proposed and its property is studied.

  • PDF