• 제목/요약/키워드: keyword spotting

검색결과 38건 처리시간 0.018초

음소 HMM을 이용한 Keyword Spotting 시스템에서의 Non-Keyword 모델에 관한 연구 (A Study on the Non-keyword Models in the Keyword Spotting System using the Phone-Based Hidden Markov Models)

  • 이활림
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.83-87
    • /
    • 1995
  • Keyword Spotting 이란 음성인식의 한 분야로서 입력된 음성에서 미리 정해진 특정단어 또는 복수 개의 단어들 중 어느 것이 포함되어 있는지의 여부를 찾아내고 이 단어를 식별해 내는 작업을 의미한다. 음소모델을 이용하여 Keyword Spotting 시스템을 구성할 경우 새로운 keyword의 추가 또는 변경이 필요할 때 단순히 그 발음사전에 따라 음소모델들을 연결시킴으로써 keyword 모델을 구성할 수 있으므로 단어모델에 의한 방법에 비해 장점이 있다. 본 논문에서는 triphone을 기본단위로 하는 HMM 에 의해 keyword 모델을 구성하고, non-keyword 모델 및 silence 모델을 함께 사용하는 keyword spotting 시스템을 구성하였다. 이러한 시스템에서 non-keyword 모델은 keyword와 keyword가 아닌 음성을 구분 지어주는 역할을 하므로 인식성능의 향상을 위해서는 적절한 non-keyword 모델의 선택이 필요하다. 본 논문에서는 10개의 state를 갖는 단일모델, 조음방법에 의해 음소들을 clustering 한 모델, 그리고 통계적 방법에 의해 음소들을 clustering 한 모델들을 각각 non-keyword 모델로 사용하여 그 성능을 비교하였다. 6개의 keyword를 대상으로 한 화자독립 keyword spotting 실험결과, 통계적 방법에 의해 음소들을 6 또는 7개의 그룹으로 clustering 한 방법이 가장 우수한 인식성능을 나타냈다.

  • PDF

Keyword spotting에서의 후처리 과정에 관한 연구 (A Study on the Postprocessing In Keyword Spotting)

  • 송화전
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.249-252
    • /
    • 1994
  • Keyword spotting 이란 음성인식의 한 분야로서 컴퓨터가 사람의 음성을 입력받아 이 음성에 미리 정해진 특정단어 또는복수개의 단어들 중 어느 것이 포함되어 있는지의 여부를 찾아내고 이 단어를 식별해 내는 작업을 의미한다. 이러한 keyword spotting 시스템의 인식 오류들을 감소시키는 방법의 하나로 keyword spotting 시스템에 후처리 과정을 둠으로써 잘못 검출된 keyword 들을 제거시키는 방법이 사용될 수 있다. 본 논문에서는 keyword로 검출된 영역에 대한 keyword 모델의 likeihood와 그 여역에 대한 filler 모델의 likelihood의 ratio 와 second best keyword 의 likelihood 그리고, 끝점존재 영역의 구간 길이등 여러 가지 정보를 이용한 후처리과정을 검토하고 인식실험을 통해 이들의 성능을 비교하였다. 6개의 부서명을 keyword로 하는 불특정 화자 keyword spotting 실험을 수행한 결과 baseline 시스템의 경우 고립단어 및 문장 형태의 음성에 대해 95.0%의 keyword 인식률을 얻었으며, 본 논문에서 검토된 네 가지 후처리 방법에 의해 keyword rejection ratio를 0%에서 5%까지 변화시켜 나갈 경우 최저 95.3%에서 최고 97.1%까지 keyword 인식률이 향상된 결과를 얻었다. 특히 성능과 계산량을 종합적으로 고려할 때 끝점 존재 영역의 구간 길이 정보를 이용한 방법이 가장 우수하였다.

  • PDF

Computational Reduction in Keyword Spotting System Based on the Bucket Box Intersection (BBI) Algorithm

  • Lee, Kyo-Heok;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제19권2E호
    • /
    • pp.27-31
    • /
    • 2000
  • Evaluating log-likelihood of Gaussian mixture density is major computational burden for the keyword spotting system using continuous HMM. In this paper, we employ the bucket box intersection (BBI) algorithm to reduce the computational complexity of keyword spotting. We make some modification in implementing BBI algorithm in order to increase the discrimination ability among the keyword models. According to our keyword spotting experiments, the modified BBI algorithm reduces 50% of log-likelihood computations without performance degradation, while the original BBI algorithm under the same condition reduces only 30% of log-likelihood computations.

  • PDF

핵심어 인식을 이용한 음성 자동 편집 시스템 구현 (Implementation of the Automatic Speech Editing System Using Keyword Spotting Technique)

  • 정익주
    • 음성과학
    • /
    • 제3권
    • /
    • pp.119-131
    • /
    • 1998
  • We have developed a keyword spotting system for automatic speech editing. This system recognizes the only keyword 'MBC news' and then sends the time information to the host system. We adopted a vocabulary dependent model based on continuous hidden Markov model, and the Viterbi search was used for recognizing the keyword. In recognizing the keyword, the system uses a parallel network where HMM models are connected independently and back-tracking information for reducing false alarms and missing. We especially focused on implementing a stable and practical real-time system.

  • PDF

신경 회로망을 이용한 연속 음성에서의 keyword spotting 인식 방식에 관한 연구 (A study on the Method of the Keyword Spotting Recognition in the Continuous speech using Neural Network)

  • 양진우;김순협
    • 한국음향학회지
    • /
    • 제15권4호
    • /
    • pp.43-49
    • /
    • 1996
  • 본 논문은 keyword spotting 기술을 이용한 247개의 DDD 지역명을 인식 대상으로 하여 화자 독립의 한국어 연속 음성인식을 위한 시스템을 제안하였다. 적용된 인식 알고리즘은 음성에서 시간축의 변화와 스펙트럼의 왜곡을 흡수할 수 있는 모델로 DP와 MLP로 구성된 동적 프로그래밍 신경회로망(DPNN)을 사용하였다. 이와 같은 실험을 위해 단어 모델을 만들고 이에 대한 단어 모델을 keyword 모델과 non-keyword 모델로 구분하여 성능을 향상시킬 수 있도록 하였다. 또한 잘못된 결과를 출력시키지 않기 위해서 후처리 과정을 두고 실험을 하였다. 실험결과, 단독어에 대한 화자 종속 실험은 93.45%의 결과를 보였고, 단독어에 대한 화자 독립 실험은 84.05%의 실험결과를 보였으며, 가장 중요한 간단한 대화체 문장의 keyword spotting 실험은 화자 종속으로 77.34%의 결과를 보였으며, 화자 독립 실험은 70.63%의 결과를 얻었다.

  • PDF

가변어휘 핵심어 검출을 위한 비핵심어 모델링 및 후처리 성능평가 (Performance Evaluation of Nonkeyword Modeling and Postprocessing for Vocabulary-independent Keyword Spotting)

  • 김형순;김영국;신영욱
    • 음성과학
    • /
    • 제10권3호
    • /
    • pp.225-239
    • /
    • 2003
  • In this paper, we develop a keyword spotting system using vocabulary-independent speech recognition technique, and investigate several non-keyword modeling and post-processing methods to improve its performance. In order to model non-keyword speech segments, monophone clustering and Gaussian Mixture Model (GMM) are considered. We employ likelihood ratio scoring method for the post-processing schemes to verify the recognition results, and filler models, anti-subword models and N-best decoding results are considered as an alternative hypothesis for likelihood ratio scoring. We also examine different methods to construct anti-subword models. We evaluate the performance of our system on the automatic telephone exchange service task. The results show that GMM-based non-keyword modeling yields better performance than that using monophone clustering. According to the post-processing experiment, the method using anti-keyword model based on Kullback-Leibler distance and N-best decoding method show better performance than other methods, and we could reduce more than 50% of keyword recognition errors with keyword rejection rate of 5%.

  • PDF

호출 명령어 방식 핵심어 검출 시스템의 임베디드 DSP 구현에 관한 연구 (A Study on Embedded DSP Implementation of Keyword-Spotting System using Call-Command)

  • 송기창;강철호
    • 한국멀티미디어학회논문지
    • /
    • 제13권9호
    • /
    • pp.1322-1328
    • /
    • 2010
  • 최근 핵심어 검출 시스템은 유비쿼터스 홈네트워크의 UI(User Interface) 기술로써 각광받고 있다. 핵심어 검출 시스템은 TV, 라디오, 떠드는 소리 등과 같은 동적 생활 잡음에 매우 취약하다. 특히, 실제 임베디드 DSP(Digital Signal Processor) 환경에서는 상대적으로 CPU(Central Processing Unit) 연산능력이 떨어지므로, 실시간으로 입력되는 음성을 인식하기가 어려워 인식율은 급격히 하락하게 된다. 본 논문은 임베디드 DSP 환경에서 원활한 연속음성인식을 수행하기 위하여 '나래야', '홈매니저'등과 같은 호출명령어를 선정하고 잡음을 포함한 묵음구간과 호출명령어로 구성된 최소의 인식네트워크를 토큰으로 구성하여 입력된 음성에 대해 실시간 음성인식을 계속적으로 수행한다.

방송뉴스 핵심어 검출 시스템에서의 오인식 거부를 위한 DTW의 적용 (DTW based Utterance Rejection on Broadcasting News Keyword Spotting System)

  • 박경미;박정식;오영환
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.155-158
    • /
    • 2005
  • Keyword spotting is effective to find keyword from the continuously pronounced speech. However, non-keyword may be accepted as keyword when the environmental noise occurs or speaker changes. To overcome this performance degradation, utterance rejection techniques using confidence measure on the recognition result have been developed. In this paper, we apply DTW to the HMM based broadcasting news keyword spotting system for rejecting non-keyword. Experimental result shows that false acceptance rate is decreased to 50%.

  • PDF

핵심어 인식기에서 단어의 음소레벨 로그 우도 비율의 패턴을 이용한 발화검증 방법 (Utterance Verification using Phone-Level Log-Likelihood Ratio Patterns in Word Spotting Systems)

  • 김정현;권석봉;김회린
    • 말소리와 음성과학
    • /
    • 제1권1호
    • /
    • pp.55-62
    • /
    • 2009
  • This paper proposes an improved method to verify a keyword segment that results from a word spotting system. First a baseline word spotting system is implemented. In order to improve performance of the word spotting systems, we use a two-pass structure which consists of a word spotting system and an utterance verification system. Using the basic likelihood ratio test (LRT) based utterance verification system to verify the keywords, there have been certain problems which lead to performance degradation. So, we propose a method which uses phone-level log-likelihood ratios (PLLR) patterns in computing confidence measures for each keyword. The proposed method generates weights according to the PLLR patterns and assigns different weights to each phone in the process of generating confidence measures for the keywords. This proposed method has shown to be more appropriate to word spotting systems and we can achieve improvement in final word spotting accuracy.

  • PDF

500단어급 핵심어 검출기에서 화자적응 성능 평가 (Speaker Adaptation Performance Evaluation in Keyword Spotting System)

  • 서현철;이경록;김진영;최승호
    • 대한음성학회지:말소리
    • /
    • 제43호
    • /
    • pp.151-161
    • /
    • 2002
  • This study presents performance analysis results of speaker adaptation for keyword spotting system. In this paper, we implemented MLLR (Maximum Likelihood Linear Regression) method on our middle size vocabulary keyword spotting system. This system was developed for directory services of universities and colleges. The experimental results show that speaker adaptation reduces the false alarm rate to 1/3 with the preservation of the mis-detection ratio. This improvement is achieved when speaker adaptation is applied to not only keyword models but also non-keyword models.

  • PDF