• Title/Summary/Keyword: keyword frequency analysis

Search Result 316, Processing Time 0.021 seconds

A Study on Analysis of consumer perception of YouTube advertising using text mining (텍스트 마이닝을 활용한 Youtube 광고에 대한 소비자 인식 분석)

  • Eum, Seong-Won
    • Management & Information Systems Review
    • /
    • v.39 no.2
    • /
    • pp.181-193
    • /
    • 2020
  • This study is a study that analyzes consumer perception by utilizing text mining, which is a recent issue. we analyzed the consumer's perception of Samsung Galaxy by analyzing consumer reviews of Samsung Galaxy YouTube ads. for analysis, 1,819 consumer reviews of YouTube ads were extracted. through this data pre-processing, keywords for advertisements were classified and extracted into nouns, adjectives, and adverbs. after that, frequency analysis and emotional analysis were performed. Finally, clustering was performed through CONCOR. the summary of this study is as follows. the first most frequently mentioned words were Galaxy Note (n = 217), Good (n = 135), Pen (n = 40), and Function (n = 29). it can be judged through the advertisement that consumers "Galaxy Note", "Good", "Pen", and "Features" have good functional aspects for Samsung mobile phone products and positively recognize the Note Pen. in addition, the recognition of "Samsung Pay", "Innovation", "Design", and "iPhone" shows that Samsung's mobile phone is highly regarded for its innovative design and functional aspects of Samsung Pay. second, it is the result of sentiment analysis on YouTube advertising. As a result of emotional analysis, the ratio of emotional intensity was positive (75.95%) and higher than negative (24.05%). this means that consumers are positively aware of Samsung Galaxy mobile phones. As a result of the emotional keyword analysis, positive keywords were "good", "good", "innovative", "highest", "fast", "pretty", etc., negative keywords were "frightening", "I want to cry", "discomfort", "sorry", "no", etc. were extracted. the implication of this study is that most of the studies by quantitative analysis methods were considered when looking at the consumer perception study of existing advertisements. In this study, we deviated from quantitative research methods for advertising and attempted to analyze consumer perception through qualitative research. this is expected to have a great influence on future research, and I am sure that it will be a starting point for consumer awareness research through qualitative research.

Analysis on Dynamics of Korea Startup Ecosystems Based on Topic Modeling (토픽 모델링을 활용한 한국의 창업생태계 트렌드 변화 분석)

  • Heeyoung Son;Myungjong Lee;Youngjo Byun
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.315-338
    • /
    • 2022
  • In 1986, Korea established legal systems to support small and medium-sized start-ups, which becomes the main pillars of national development. The legal systems have stimulated start-up ecosystems to have more than 1 million new start-up companies founded every year during the past 30 years. To analyze the trend of Korea's start-up ecosystem, in this study, we collected 1.18 million news articles from 1991 to 2020. Then, we extracted news articles that have the keywords "start-up", "venture", and "start-up". We employed network analysis and topic modeling to analyze collected news articles. Our analysis can contribute to analyzing the government policy direction shown in the history of start-up support policy. Specifically, our analysis identifies the dynamic characteristics of government influenced by external environmental factors (e.g., society, economy, and culture). The results of our analysis suggest that the start-up ecosystems in Korea have changed and developed mainly by the government policies for corporation governance, industrial development planning, deregulation, and economic prosperity plan. Our frequency keyword analysis contributes to understanding entrepreneurial productivity attributed to activities among the networked components in industrial ecosystems. Our analyses and results provide practitioners and researchers with practical and academic implications that can help to establish dedicated support policies through forecast tasks of the economic environment surrounding the start-ups. Korean entrepreneurial productivity has been empowered by growing numbers of large companies in the mobile phone industry. The spectrum of large companies incorporates content startups, platform providers, online shopping malls, and youth-oriented start-ups. In addition, economic situational factors contribute to the growth of Korean entrepreneurial productivity the economic, which are related to the global expansions of the mobile industry, and government efforts to foster start-ups. Our research is methodologically implicative. We employ natural language processes for 30 years of media articles, which enables more rigorous analysis compared to the existing studies which only observe changes in government and policy based on a qualitative manner.

Exploring the Trend of Korean Creative Dance by Analyzing Research Topics : Application of Text Mining (연구주제 분석을 통한 한국창작무용 경향 탐색 : 텍스트 마이닝의 적용)

  • Yoo, Ji-Young;Kim, Woo-Kyung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.53-60
    • /
    • 2020
  • The study is based on the assumption that the trend of phenomena and trends in research are contextually consistent. Therefore the purpose of this study is to explore the trend of dance through the subject analysis of the Korean creative dance study by utilizing text mining. Thus, 1,291 words were analyzed in the 616 journal title, which were established on the paper search website. The collection, refining and analysis of the data were all R 3.6.0 SW. According to the study, keywords representing the times were frequently used before the 2000s, but Korean creative dance research types were also found in terms of education and physical training. Second, the frequency of keywords related to the dance troupe's performance was high after the 2000s, but it was confirmed that Choi Seung-hee was still in an important position in the study of Korean creative dance. Third, an analysis of the overall research subjects of the Korean creative dance study showed that the research on 'Art of Choi Seung-hee in the modern era' was the highest proportion. Fourth, the Hot Topics, which are rising as of 2000, appeared as 'the performance activities of the National Dance Company' and 'the choreography expression and utilization of traditional dance'. However, since the recent trend of the National Dance Company's performance is advocating 'modernization based on tradition', it has been confirmed that the trend of Korean creative dance since the 2000s has been focused on the use of traditional dance motifs. Fifth, the Cold Topic, which has been falling as of 2000, has been shown to be a study of 'dancing expressions by age'. It was judged that interest in research also decreased due to the tendency to mix various dance styles after the establishment of the genre of Korean creative dance.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

Analyzing the discriminative characteristic of cover letters using text mining focused on Air Force applicants (텍스트 마이닝을 이용한 공군 부사관 지원자 자기소개서의 차별적 특성 분석)

  • Kwon, Hyeok;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.75-94
    • /
    • 2021
  • The low birth rate and shortened military service period are causing concerns about selecting excellent military officers. The Republic of Korea entered a low birth rate society in 1984 and an aged society in 2018 respectively, and is expected to be in a super-aged society in 2025. In addition, the troop-oriented military is changed as a state-of-the-art weapons-oriented military, and the reduction of the military service period was implemented in 2018 to ease the burden of military service for young people and play a role in the society early. Some observe that the application rate for military officers is falling due to a decrease of manpower resources and a preference for shortened mandatory military service over military officers. This requires further consideration of the policy of securing excellent military officers. Most of the related studies have used social scientists' methodologies, but this study applies the methodology of text mining suitable for large-scale documents analysis. This study extracts words of discriminative characteristics from the Republic of Korea Air Force Non-Commissioned Officer Applicant cover letters and analyzes the polarity of pass and fail. It consists of three steps in total. First, the application is divided into general and technical fields, and the words characterized in the cover letter are ordered according to the difference in the frequency ratio of each field. The greater the difference in the proportion of each application field, the field character is defined as 'more discriminative'. Based on this, we extract the top 50 words representing discriminative characteristics in general fields and the top 50 words representing discriminative characteristics in technology fields. Second, the number of appropriate topics in the overall cover letter is calculated through the LDA. It uses perplexity score and coherence score. Based on the appropriate number of topics, we then use LDA to generate topic and probability, and estimate which topic words of discriminative characteristic belong to. Subsequently, the keyword indicators of questions used to set the labeling candidate index, and the most appropriate index indicator is set as the label for the topic when considering the topic-specific word distribution. Third, using L-LDA, which sets the cover letter and label as pass and fail, we generate topics and probabilities for each field of pass and fail labels. Furthermore, we extract only words of discriminative characteristics that give labeled topics among generated topics and probabilities by pass and fail labels. Next, we extract the difference between the probability on the pass label and the probability on the fail label by word of the labeled discriminative characteristic. A positive figure can be seen as having the polarity of pass, and a negative figure can be seen as having the polarity of fail. This study is the first research to reflect the characteristics of cover letters of Republic of Korea Air Force non-commissioned officer applicants, not in the private sector. Moreover, these methodologies can apply text mining techniques for multiple documents, rather survey or interview methods, to reduce analysis time and increase reliability for the entire population. For this reason, the methodology proposed in the study is also applicable to other forms of multiple documents in the field of military personnel. This study shows that L-LDA is more suitable than LDA to extract discriminative characteristics of Republic of Korea Air Force Noncommissioned cover letters. Furthermore, this study proposes a methodology that uses a combination of LDA and L-LDA. Therefore, through the analysis of the results of the acquisition of non-commissioned Republic of Korea Air Force officers, we would like to provide information available for acquisition and promotional policies and propose a methodology available for research in the field of military manpower acquisition.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.