• Title/Summary/Keyword: keyword co-occurrence analysis

Search Result 87, Processing Time 0.031 seconds

A Study on Multi-frequency Keyword Visualization based on Co-occurrence (다중빈도 키워드 가시화에 관한 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.103-104
    • /
    • 2018
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

A Study on Multi-frequency Keyword Visualization based on Co-occurrence (다중빈도 키워드 가시화에 관한 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.424-425
    • /
    • 2018
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

Keyword Visualization based on the number of occurrences (출현회수에 따른 키워드 가시화 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.484-485
    • /
    • 2019
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

Keyword Visualization based on the Number of Occurrences (키워드 빈도수에 따른 시각화 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.565-566
    • /
    • 2021
  • Recently, interest in data analysis has increased as the importance of big data becomes more important. Particularly, as social media data and academic research communities become more active and important, analysis becomes more important. In this study, co-word analysis was conducted through altmetrics articles collected from 2012 to 2017. In this way, the co-occurrence network map is derived from the keyword and the emphasized keyword is extracted.

  • PDF

A Study on Technology Forecasting based on Co-occurrence Network of Keyword in Multidisciplinary Journals (다학제 분야 학술지의 주제어 동시발생 네트워크를 활용한 기술예측 연구)

  • Kim, Hyunuk;Ahn, Sang-Jin;Jung, Woo-Sung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.4
    • /
    • pp.49-63
    • /
    • 2015
  • Keyword indexed in multidisciplinary journals show trends about science and technology innovation. Nature and Science were selected as multidisciplinary journals for our analysis. In order to reduce the effect of plurality of keyword, stemming algorithm were implemented. After this process, we fitted growth curve of keyword (stem) following bass model, which is a well-known model in diffusion process. Bass model is useful for expressing growth pattern by assuming innovative and imitative activities in innovation spreading. In addition, we construct keyword co-occurrence network and calculate network measures such as centrality indices and local clustering coefficient. Based on network metrics and yearly frequency of keyword, time series analysis was conducted for obtaining statistical causality between these measures. For some cases, local clustering coefficient seems to Granger-cause yearly frequency of keyword. We expect that local clustering coefficient could be a supportive indicator of emerging science and technology.

Discovery of promising business items by technology-industry concordance and keyword co-occurrence analysis of US patents. (기술-산업 연계구조 및 특허 분석을 통한 미래유망 아이템 발굴)

  • Cho Byoung-Youl;Rho Hyun-Sook
    • Journal of Korea Technology Innovation Society
    • /
    • v.8 no.2
    • /
    • pp.860-885
    • /
    • 2005
  • This study relates to develop a quantitative method through which promising technology-based business items can be discovered and selected. For this study, we utilized patent trend analysis, technology-industry concordance analysis, and keyword co-occurrence analysis of US patents. By analyzing patent trends and technology-industry concordance, we were able to find out the emerging industry trends : prevalence of bio industry, service industry, and B2C business. From the direct and co-occurrence analysis of newly discovered patent keywords in the year, 2000, 28 promising business item candidates were extracted. Finally, the promising item candidates were prioritized using 4 business attractiveness determinants; market size, product life cycle, degree of the technological innovation, and coincidence with the industry trends. This result implicates that reliable discovery and selection of promising technology-based business items can be performed by a quantitative, objective and low- cost process using knowledge discovery method from patent database instead of peer review.

  • PDF

Correlational Structure Modelling for Fall Accident Risk Factors of Portable Ladders Using Co-occurrence Keyword Networks (동시 출현 기반 키워드 네트워크 기법을 이용한 이동식 사다리 추락 재해 위험 요인 연관 구조 모델링)

  • Hwang, Jong Moon;Shin, Sung Woo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.50-59
    • /
    • 2021
  • The main purpose of accident analysis is to identify the causal factors and the mechanisms of those factors leading to the accident. However, current accident analysis techniques focus only on finding the factors related to the accident without providing more insightful results, such as structures or mechanisms. For this reason, preventive actions for safety management are concentrated on the elimination of causal factors rather than blocking the connection or chain of accident processes. This greatly reduces the effectiveness of safety management in practice. In the present study, a technique to model the correlational structure of accident risk factors is proposed by using the co-occurrence keyword network analysis technique. To investigate the effectiveness of the proposed technique, a case study involving a portable ladder fall accident is conducted. The results indicate that the proposed technique can construct the correlational structure model of the risk factors of a portable ladder fall accident. This proves the effectiveness of the proposed technique in modeling the correlational structure of accident risk factors.

Current Research Trends in Entrepreneurship Based on Topic Modeling and Keyword Co-occurrence Analysis: 2002~2021 (토픽모델링과 동시출현단어 분석을 이용한 기업가정신에 대한 연구동향 분석: 2002~2021)

  • Jang, Sung Hee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.3
    • /
    • pp.245-256
    • /
    • 2022
  • The purpose of this study is to provide comprehensive insights on the current research trends in entrepreneurship based on topic modeling and keyword co-occurrence analysis. This study queried Web of Science database with 'entrepreneurship' and collected 14,953 research articles between 2002 and 2021. The study used R program for topic modeling and VOSviewer program for keyword co-occurrence analysis. The results of this study are as follows. First, as a result of keyword co-occurrence analysis, 5 clusters divided: entrepreneurship and innovation cluster, entrepreneurship education cluster, social entrepreneurship and sustainability cluster, enterprise performance cluster, and knowledge and technology transfer cluster. Second, as a result of the topic modeling analysis, 12 topics found: start-up environment and economic development, international entrepreneurship, venture capital, government policy and support, social entrepreneurship, management-related issues, regional city planning and development, entrepreneurship research, and entrepreneurial intention. Finally, the study identified two hot topics(venture capital and entrepreneurship intention) and a cold topic(international entrepreneurship). The results of this study are useful to understand current research trends in entrepreneurship research and provide insights into research of entrepreneurship.

A Bibliometric Analysis of Research Trends in Domestic Integrative Medicine Journals : Focused on Integrative Medicine Research (국내 통합의학 저널의 연구 동향에 대한 계량서지학적 분석 : Integrative Medicine Research를 중심으로)

  • Dae-Jin Kim;Tae-Hyung Yoon;Jong-Rok Lee;Byung-Hee Choi
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.2
    • /
    • pp.197-210
    • /
    • 2024
  • Purpose : This study aimed to analyze research trends in the field of integrative medicine through a bibliometric analysis of articles published in Integrative Medicine Research (IMR) journal from 2017 to 2022. Methods : Articles published in IMR journal between 2017 and 2022 were searched using the Web of Science database on August 22, 2023. The analysis was performed using the Bibliometrix and Biblioshiny tools in R (version 4.3.1) and VOSviewer (version 1.6.19). Results : The key findings were as follows: average citations per article (9.41), total authors (1,142), single-authored articles (12), average articles per author (0.27), average co-authors per article (5.27), and rate of international co-authorships (15.69 %). The most-cited article was on the cryopreservation of cells or tissues and their clinical applications. The top keyword analysis by author keywords showed that "acupuncture" was the most frequently used keyword (33 times). Co-occurrence network analysis showed 85 high-frequency keywords that appeared five or more times, and the top five keywords by total link strength were "acupuncture," "herbal medicine," "prevalence," "alternative medicine," and "complementary." The study found that, contrary to the trend in complementary and alternative medicine research in Korea, the IMR journal actively conducts intervention studies to provide clinical evidence. Conclusion : In the IMR journal, "acupuncture" was the most frequent of author keywords. The analysis of keyword trend topics over time showed that the keyword "systematic review" continued to appear from 2020 to 2022, and the keyword "clinical practice guideline" appeared for the first time in 2021. In particular, the co-occurrence network analysis highlighted keywords related to intervention research, in contrast to domestic research trends. While this study analyzed only one journal, future studies expanding the category of integrative medicine and increasing the number of journals analyzed may provide further insights.

Trends in Leopard Cat (Prionailurus bengalensis) Research through Co-word Analysis

  • Park, Heebok;Lim, Anya;Choi, Taeyoung;Han, Changwook;Park, Yungchul
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.46-49
    • /
    • 2018
  • This study aims to explore the knowledge structure of the leopard cat (Prionailurus bengalensis) research during the period of 1952-2017. Data was collected from Google Scholar and Research Information Service System (RISS), and a total of 482 author keywords from 125 papers from peer-reviewed scholarly journals were retrieved. Co-word analysis was applied to examine patterns and trends in the leopard cat research by measuring the association strengths of the author keywords along with the descriptive analysis of the keywords. The result shows that the most commonly used keywords in leopard cat research were Felidae, Iriomte cat, and camera trap except for its English and scientific name, and camera traps became a frequent keyword since 2005. Co-word analysis also reveals that leopard cat research has been actively conducted in Southeast Asia in conjugation with studying other carnivores using the camera traps. Through the understanding of the patterns and trends, the finding of this study could provide an opportunity for the exploration of neglected areas in the leopard cat research and conservation.