• Title/Summary/Keyword: keys

Search Result 1,087, Processing Time 0.023 seconds

Efficient Fault-Tolerant Multicast on Hypercube Multicomputer System (하이퍼 큐브 컴퓨터에서 효과적인 오류 허용 다중전송기법)

  • 명훈주;김성천
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.273-279
    • /
    • 2003
  • Hypercube multicomputers have been drawing considerable attention from many researchers due to their regular structure and short diameter. One of keys to the performance of Hypercube is the efficiency of communication among processors. Among several communication patterns, multicast is important, which is found in a variety of applications as data replication and signal processing. As the number of processors increases, the probability of occurrences of fault components also increases. So it would be desirable to design an efficient scheme that multicasts messages in the presence of faulty component. In fault-tolerant routing and multicast, there are local information based scheme, global information based scheme and limited information based scheme in terms of information. In general, limited information is easy to obtain and maintain by compressing information in a concise format. In this paper, we propose a new routing scheme and a new multicast scheme using recently proposed fully reachability information scheme and new local information scheme. The proposed multicast scheme increases multicast success possibility and reduce deroute cases. Experiments show that multicast success possibility can increase at least 15% compared to previous method.

A taxonomy study on 9 taxa of Carex L. (Cyperaceae) in Korea (한국산 사초속(Carex L.) 7절 9종에 대한 분류학적 고찰)

  • Oh, Yong Cha;Lee, Chang Shook;Heo, Sun Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.34 no.3
    • /
    • pp.245-264
    • /
    • 2004
  • For nine taxa of the genus Carex which consist of C. arenicola, C. chordorhiza, C. curta, C. gibba, C. laevissima, C. leiorhyncha, C. neuromrpa, C. maakii and C. remouscula with mixed pistillate and staminate flowers, morphological characters such as inflorescense, spikelet, inflorescence bract, utricle, pistillate and staminate scales, achene, length between two spikelets were observed to find useful characters for their identification. Especially, the shape and the number of spikelet were very useful characters to divide the treated nine taxa into two groups, the their keys were prepared. The first group was comprised of five species of C. arenicola, C. chordorhiza, C. curta, C. gibba, and C. remouscula, which were characterized by broadly oboval or narrowly elliptical shape of spikelet, and 3-9 spikelets per infIorescence and gradual decrease in length between two spikelets. The second group was composed of four species of C. laevissima, C. leiorhyncha, C. neurocarpa, C. maakii, which were distinguished by oval shape of spikelet, and 17-20 spikelets per infIorescence and repetition of increase.

Dispersion Effects of Wave Force on Interlocking Caisson Breakwater with Shear-Key (전단키형 인터로킹 케이슨 방파제의 파력분산효과)

  • Song, Sung Hoon;Park, Min Su;Jeong, Youn Ju;Hwang, Yoon Koog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • Long caisson breakwaters can improve the structural safety of a caisson due to the wave dispersion effect which reduces the average wave force acting on one caisson. However, in order to make long caissons, there are many manufacturing and construction limitations. Recently, interlocking caisson systems, which are to form a long caisson by interlocking individual caissons with adjacent caissons, have been much attention. In the present study, a interlocking caisson system with shear-keys was proposed and the wave dispersion effect according to the shear-key was evaluated analytically. As a result, (1) Because of the asymmetric shape of the interlocking caisson, the structure behavior and the wave dispersion effect of one are also asymmetric. (2) The wave dispersion effect is more influenced by the distribution and characteristics of wave acting on each caisson rather than the shape of the shear-key such as shear angle, height, shear length ratio. (3) The interlocking caisson breakwater is almost the same behavior and wave dispersion effect as a fully integrated breakwater.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

Implementation of the Large-scale Data Signature System Using Hash Tree Replication Approach (해시 트리 기반의 대규모 데이터 서명 시스템 구현)

  • Park, Seung Kyu
    • Convergence Security Journal
    • /
    • v.18 no.1
    • /
    • pp.19-31
    • /
    • 2018
  • As the ICT technologies advance, the unprecedently large amount of digital data is created, transferred, stored, and utilized in every industry. With the data scale extension and the applying technologies advancement, the new services emerging from the use of large scale data make our living more convenient and useful. But the cybercrimes such as data forgery and/or change of data generation time are also increasing. For the data security against the cybercrimes, the technology for data integrity and the time verification are necessary. Today, public key based signature technology is the most commonly used. But a lot of costly system resources and the additional infra to manage the certificates and keys for using it make it impractical to use in the large-scale data environment. In this research, a new and far less system resources consuming signature technology for large scale data, based on the Hash Function and Merkle tree, is introduced. An improved method for processing the distributed hash trees is also suggested to mitigate the disruptions by server failures. The prototype system was implemented, and its performance was evaluated. The results show that the technology can be effectively used in a variety of areas like cloud computing, IoT, big data, fin-tech, etc., which produce a large-scale data.

  • PDF

Numerical Analysis of Effect of Waveform Micropile on Foundation Underpinning During Building Vertical Extension Remodeling (수치해석을 통한 수직증축 리모델링시 파형 마이크로파일의 보강효과 분석)

  • Wang, Cheng-Can;Jang, Youngeun;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.335-344
    • /
    • 2019
  • Micropiles are widely used for foundation underpinning to enhance bearing capacity and reduce settlement of existing foundation. In this study, the main objective is to evaluate underpinning performance of a newly developed micropile called waveform micropile for foundation underpinning during vertical extension. Finite element method (FEM) was used to evaluate the underpinning performance of waveform micropile in terms of load-settlement response of underpinned foundation and load sharing behavior. For comparison, underpinning effects of three conventional micropiles with different lengths were also discussed in this study. Numerical results of load-settlement response for single pile demonstrated that bearing capacity and axial stiffness of waveform micropiles were higher than those of conventional micropiles because of the effect of shear keys of waveform micropiles. When additional loads 20 %, which is according to design loads of the vertical extension, were applied to the underpinned foundation, load sharing capacity of waveform micropile was 40 % higher than conventional micropile at the same size. The waveform micropile also showed better underpinning performance than the conventional micropile of length 1~1.5 times of waveform micropile.

Design of Small Space Convergence Locking device Using IoT (IOT를 이용한 소규모 공간의 융합 잠금 장치 제안)

  • Park, Hyun-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • In this paper, we propose the development of a smart space security device that can be opened and closed remotely using IoT. Existing space security devices can control opening and closing by breaking hardware or only using button devices or replicated keys. The recent COVID-19 crisis has created several applications for non-contact devices. In this study, we propose the development of a small space security device that has the function of unlocking through an app without touching the device. By transferring the control authority to a smartphone, device that cannot be opened or closed by only operating hardware at the user's option. It is convenient and hygienic because it can be opened and closed using an app without touching the locking device. Multiple security is possible because security can be released using an app after user authentication by fingerprint recognition and pattern input on a smartphone. If the user wishes, after using the app security, the security is released by directly touching a button installed in the safe or space or opening it with a key. In addition, by adding an inactive function to the app, it is designed so that the door of the safe cannot be opened when the key is lost or the small safe is lost. This study is expected to be able to effectively expand the security system by applying variously to objects that require security.

Construction of UOWHF based on Block Cipher (유니버설 일방향 해쉬 함수에 대한 블록 암호 기반 구성 방법)

  • 이원일
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.1
    • /
    • pp.101-111
    • /
    • 2004
  • Preneel, Govaerts, and Vandewalle considered the 64 basic ways to construct a collision resistant hash function from a block cipher. They regarded 12 of these 64 schemes as secure, though no proofs or formal claims were given. Black, Rogaway, and Shrimpton presented a more proof-centric look at the schemes from PGV. They proved that, in the black box model of block cipher, 12 of 64 compression functions are CRHFs and 20 of 64 extended hash functions are CRHFs. In this paper, we present 64 schemes of block-cipher-based universal one way hash functions using the main idea of PGV and analyze these schemes in the black box model. We will show that 30 of 64 compression function families UOWHF and 42 of 64 extended hash function families are UOWHF. One of the important results is that, in this black box model, we don't need the mask keys for the security of UOWHF in contrast with the results in general security model of UOWHF. Our results also support the assertion that building an efficient and secure UOWHF is easier than building an efficient and secure CRHF.

Design of an Effective Deep Learning-Based Non-Profiling Side-Channel Analysis Model (효과적인 딥러닝 기반 비프로파일링 부채널 분석 모델 설계방안)

  • Han, JaeSeung;Sim, Bo-Yeon;Lim, Han-Seop;Kim, Ju-Hwan;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1291-1300
    • /
    • 2020
  • Recently, a deep learning-based non-profiling side-channel analysis was proposed. The deep learning-based non-profiling analysis is a technique that trains a neural network model for all guessed keys and then finds the correct secret key through the difference in the training metrics. As the performance of non-profiling analysis varies greatly depending on the neural network training model design, a correct model design criterion is required. This paper describes the two types of loss functions and eight labeling methods used in the training model design. It predicts the analysis performance of each labeling method in terms of non-profiling analysis and power consumption model. Considering the characteristics of non-profiling analysis and the HW (Hamming Weight) power consumption model is assumed, we predict that the learning model applying the HW label without One-hot encoding and the Correlation Optimization (CO) loss will have the best analysis performance. And we performed actual analysis on three data sets that are Subbytes operation part of AES-128 1 round. We verified our prediction by non-profiling analyzing two data sets with a total 16 of MLP-based model, which we describe.

Reversible data hiding technique applying triple encryption method (삼중 암호화 기법을 적용한 가역 데이터 은닉기법)

  • Jung, Soo-Mok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.36-44
    • /
    • 2022
  • Reversible data hiding techniques have been developed to hide confidential data in the image by shifting the histogram of the image. These techniques have a weakness in which the security of hidden confidential data is weak. In this paper, to solve this drawback, we propose a technique of triple encrypting confidential data using pixel value information and hiding it in the cover image. When confidential data is triple encrypted using the proposed technique and hidden in the cover image to generate a stego-image, since encryption based on pixel information is performed three times, the security of confidential data hidden by triple encryption is greatly improved. In the experiment to measure the performance of the proposed technique, even if the triple-encrypted confidential data was extracted from the stego-image, the original confidential data could not be extracted without the encryption keys. And since the image quality of the stego-image is 48.39dB or higher, it was not possible to recognize whether confidential data was hidden in the stego-image, and more than 30,487 bits of confidential data were hidden in the stego-image. The proposed technique can extract the original confidential data from the triple-encrypted confidential data hidden in the stego-image without loss, and can restore the original cover image from the stego-image without distortion. Therefore, the proposed technique can be effectively used in applications such as military, medical, digital library, where security is important and it is necessary to completely restore the original cover image.