• Title/Summary/Keyword: key to species

Search Result 1,354, Processing Time 0.038 seconds

Identification of genes involved in inbreeding depression of reproduction in Langshan chickens

  • Xue, Qian;Li, Guohui;Cao, Yuxia;Yin, Jianmei;Zhu, Yunfen;Zhang, Huiyong;Zhou, Chenghao;Shen, Haiyu;Dou, Xinhong;Su, Yijun;Wang, Kehua;Zou, Jianmin;Han, Wei
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.975-984
    • /
    • 2021
  • Objective: Inbreeding depression of reproduction is a major concern in the conservation of native chicken genetic resources. Here, based on the successful development of strongly inbred (Sinb) and weakly inbred (Winb) Langshan chickens, we aimed to evaluate inbreeding effects on reproductive traits and identify candidate genes involved in inbreeding depression of reproduction in Langshan chickens. Methods: A two-sample t-test was performed to estimate the differences in phenotypic values of reproductive traits between Sinb and Winb chicken groups. Three healthy chickens with reproductive trait values around the group mean values were selected from each of the groups. Differences in ovarian and hypothalamus transcriptomes between the two groups of chickens were analyzed by RNA sequencing (RNA-Seq). Results: The Sinb chicken group showed an obvious inbreeding depression in reproduction, especially for traits of age at the first egg and egg number at 300 days (p<0.01). Furthermore, 68 and 618 differentially expressed genes (DEGs) were obtained in the hypothalamus and ovary between the two chicken groups, respectively. In the hypothalamus, DEGs were mainly enriched in the pathways related to vitamin metabolism, signal transduction and development of the reproductive system, such as the riboflavin metabolism, Wnt signaling pathway, extracellular matrix-receptor interaction and focal adhesion pathways, including stimulated by retinoic acid 6, serpin family F member 1, secreted frizzled related protein 2, Wnt family member 6, and frizzled class receptor 4 genes. In the ovary, DEGs were significantly enriched in pathways associated with basic metabolism, including amino acid metabolism, oxidative phosphorylation, and glycosaminoglycan degradation. A series of key DEGs involved in folate biosynthesis (gamma-glutamyl hydrolase, guanosine triphosphate cyclohydrolase 1), oocyte meiosis and ovarian function (cytoplasmic polyadenylation element binding protein 1, structural maintenance of chromosomes 1B, and speedy/RINGO cell cycle regulator family member A), spermatogenesis and male fertility (prostaglandin D2 synthase 21 kDa), Mov10 RISC complex RNA helicase like 1, and deuterosome assembly protein 1) were identified, and these may play important roles in inbreeding depression in reproduction. Conclusion: The results improve our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction and provide a theoretical basis for the conservation of species resources.

Oxya chinensis sinuosa Mishchenko (Grasshopper) Extract Protects INS-1 Pancreatic β cells against Glucotoxicity-induced Apoptosis and Oxidative Stress (INS-1 췌장 베타 세포에서 벼메뚜기(Oxya chinensis sinuosa Mistshenk) 추출물의 당독성 개선 효과)

  • Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.969-979
    • /
    • 2021
  • Type 2 diabetes is a serious chronic metabolic disease, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent complications from diabetes. Hyperglycemia is a key pathologic feature of type 2 diabetes that mainly results from insulin resistance and pancreatic β-cell dysfunction. Chronic exposure of β-cells to elevated glucose concentrations induces glucotoxicity. In this study, we examined whether an 80% ethanol extract of Oxya chinensis sinuosa Mishchenko (OEE) protected INS-1 pancreatic β-cells against glucotoxicity-induced apoptosis and oxidative stress. Pretreatment with a high concentration of glucose (high glucose = 30 mM) induced glucotoxicity and apoptosis of INS-1 pancreatic β cells. Treatment with OEE significantly increased cell viability. Treatment with 0.01-0.20 mg/ml OEE dose dependently decreased intracellular reactive oxygen species, lipid peroxidation, and nitric oxide levels and increased insulin secretion in high glucose-pretreated INS-1 β cells. OEE also significantly increased the activities of antioxidant enzymes in response to high-glucose-induced oxidative stress. Moreover, OEE treatment significantly reduced the expressions of pro-apoptotic proteins, including Bax, cytochrome C, caspase-3, and caspase-9, and increased anti-apoptotic Bcl-2 expression. Apoptotic cells were identified using Annexin-V/propidium iodide staining, which revealed that treatment with OEE significantly reduced high-glucose-induced apoptosis. These findings implicate OEE as a valuable functional food in protecting pancreatic β-cells against glucotoxicity-induced apoptosis and oxidative stress.

Enhanced Antioxidative Potential by Silymarin Treatment through the Inductionof Nrf2/MAPK Mediated HO-1 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Nrf2/MAPK 의 활성을 통한 HO-1 과발현에 의한 silymarin의 항산화 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.776-782
    • /
    • 2023
  • Silymarin, which is derived from dried Silybum marianum (milk thistle) seeds and fruits, possesses various beneficial properties, such as hepatoprotective, antioxidative, anti-inflammatory, and anticancer activity. This research aimed to explore the antioxidative activity of silymarin against oxidative stress and understand its molecular mechanism in RAW 264.7 cells. The study employed cell viability and reactive oxygen species (ROS) formation assays and western blot analysis. The results demonstrated that silymarin effectively reduced intracellular ROS levels induced by lipopolysaccharide (LPS) in a dose-dependent manner without causing any cytotoxic effects. Moreover, silymarin treatment significantly upregulated the expression of heme oxygenase (HO)-1, a phase II enzyme known for its potent antioxidative activity. Additionally, silymarin treatment significantly induced the expression of nuclear factor-erythroid 2 p45-related factor (Nrf) 2, a transcription factor responsible for regulating antioxidative enzymes, which was consistent with the upregulated HO-1 expression. To investigate the involvement of key signaling pathways in maintaining cellular redox homeostasis against oxidative stress, the phosphorylation status of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) was estimated by western blot analysis. The results showed that silymarin potently induced HO-1 expression, which was mediated by the phosphorylation of p38 MAPK. To further validate the antioxidative potential of silymarin-induced HO-1 expression, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was employed and attenuated by silymarin treatment, as identified by a selective inhibitor for each signaling molecule. In conclusion, silymarin robustly enhanced antioxidative activity by inducing HO-1 via the Nrf2/p38 MAPK signaling pathway in RAW 264.7 cells.

Distribution Pattern of the Sea Urchin Strongylocentrotus nudus in Relation to Predation Pressure in Hosan, the East Coast of Korea (동해안 삼척 호산에 서식하는 둥근성게 Strongylocentrotus nudus의 분포와 피식 패턴)

  • 유재원;손용수;이창근;김정수;한창훈;김창수;문영봉;김동삼;홍재상
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.1
    • /
    • pp.40-49
    • /
    • 2004
  • An ecological study on a sea urchin population, Strongylocentrotus nudus, a key role species in recovery of macroalgal bed, was conducted in Hosan, Samcheok area on the east coast of Korea. Three experimental plots, namely, AMB (artificially-restored macroalgal bed), BG (barren grounds) and NMB (natural macroalgal bed) were established after a pilot survey in June 2002. Distribution and abundance, grazing rates, predation pressure and predator guilds on S. nudus were estimated in three plots bimonthly from Aug. to Dec., 2002. Abundance of S. nudus was lowest, but median test diameter of the urchin was highest (Kruskal-Wallis test, p-value, p<0.001 in Aug. and p=0.003 in Oct.) in NMB In-situ grazing rate of S. nudus estimated by enclosure cage experiment in NMB was about 12 times higher in Aug. (160.0 mg seaweed/g sea urchin/day) than in Oct. (13.8). Predation intensity measured by tethering experiment was higher in NMB. Most of the predators on S. nudus were invertebrates and no fish predators were found. Predator guilds identified by the fish trap experiment using live or dead sea urchins included who]ks Neptunea arthritica, starfish Asterina pectinifera, hermit crabs Pagurus of. samuelis, Paguristes barbatus, brown shawl crabs Atergatis integerrimus and crabs Actaea subglobosa. High predation pressure on S. nudus in natural macroalgal beds was the likely cause of its low density. Elevated sea urchin density and the consequent lasting deforestation of macroalgae in barren grounds demonstrate the importance of predation pressure on sea urchins.

Screening of Flavonoid Compounds with HMG-CoA Reductase Inhibitory Activities (플라보노이드 화합물로부터 HMG-CoA reductase 저해 활성 물질 탐색)

  • Son, Kun Ho;Lee, Ju Yeon;Lee, Jeong Soon;Kang, Sam Sik;Sohn, Ho Yong;Kwon, Chong Suk
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.247-256
    • /
    • 2018
  • 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) are widely used drugs for lowering blood lipid levels and preventing cardiovascular diseases. HMG-CoA reductase is a key enzyme to control the biosynthesis of cholesterol. We have tested HMG-CoA reductase-inhibitory activity on the flavonoids of 98 species in vitro. The anti-hypercholesterolemic activities of flavonoids were studied using an HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance, which represents the oxidation of NADPH by the catalytic subunit of HMG-CoA reductase in the presence of the substrate HMG-CoA. Among the clinically available statins, pravastatin was used as a positive control. Among the tested compounds, kuraridin, morin and sophoraflavanone G showed strong inhibition activities. In particular, morin and sophoraflavanone G inhibited HMG-CoA reductase by 45.0% and 54.6% at a concentration of $10{\mu}g/ml$, and the $IC_{50}$ values were calculated to $13.31{\mu}g/ml$ and $7.26{\mu}g/ml$ respectively.

A Novel PHKA1 Mutation in a Patient with Glycogen Storage Disease Type IXD (당원 축적병 9D (GSD9D) 환자의 신규 PHKA1 돌연변이)

  • Kim, Hye Jin;Nam, Soo Hyun;Kim, Sang Beom;Chung, Ki Wha;Choi, Byung-Ok
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.672-679
    • /
    • 2020
  • Distal myopathy is a clinically and genetically heterogeneous group of degenerative diseases of the distal muscle. Glycogen storage disease type IXD (GSD9D) is a metabolic distal myopathy characterized by muscle deficiency of phosphorylase kinase, a key regulatory enzyme in glycogen metabolism. Affected individuals may develop muscle weakness, degeneration, and cramps, as well as abnormal muscle pain and stiffness after exercise. It has been reported that mutations in the PHKA1 gene which encodes the alpha subunit of muscle phosphorylase kinase cause GSD9D. In this study, we examined a Korean GSD9D family with a c.3314T>C (p.I1105T) mutation in the PHKA1 gene. This mutation has not been previously reported in any mutation database nor was it found in 500 healthy controls. The mutation region is well conserved in various other species, and in silico analysis predicts that it is likely to be pathogenic. To date, only seven mutations in the PHKA1 gene have been documented, and this is the first report of Korean GSD9D patients. This study also describes and compares the clinical symptoms and pathological conditions of previously reported cases and these Korean patients. We believe that our findings will be useful for the molecular diagnosis of GSD9D.

Medium compositions reveal potential organogenesis in the diploid and tetrploid Codonopsis lanceolata

  • Kwon, Soo Jeong;Hwang, Ha Nule;Moon, Young Ja;Cho, Gab Yeon;Boo, Hee Ock;Lee, Moon Soon;Woo, Sun Hee;Kim, Hag Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.169-169
    • /
    • 2017
  • Medium composition plays a key role on influencing organogenesis in plant tissue culture. This study was carried out to examine the effects of medium composition on organogenesis in diploid and tetraploid Codonopsis lanceolata and obtain in-vitro mass propagation of superior species of C. lanceolata. Diploid C. lanceolata was found to be declined regarding MS medium composition for each concentration. However, shoot and adventitious root formation were suppressed with higher mineral salt concentration, and active growth of shoot and adventitious root was exhibited as 4.9 cm and 3.2 cm respectively in 1/2 MS medium. While in tetraploid C. lanceolata, it showed 2.9 cm and 3.2 cm respectively in 1/4 MS medium. In the case of sucrose concentration, no consistent decrease was observed for growth of shoot and the adventitious root of diploid both at high and low concentration. The growth of shoot (at 3% concentration) and adventitious root (at 7% concentration) was 2.3 cm and 2.0 cm respectively. Although there was no difference in shoot formation of tetraploid C. lanceolata in all concentrations with the range of 1.7~1.8, there was a slight decrease in shoot growth at high concentration. Results revealed that the adventitious root formation was suppressed at high concentration. The concentration of agar exhibited no significant difference in shoot formation of diploid C. lanceolata at all concentrations. The maximum result of adventitious growth (4.1 cm) was observed at 0.8% concentration. Slight inhibition of shoot formation and root formation of tetraploid C. lanceolata was observed at higher concentration. Shoot formation of diploid C. lanceolata also exhibited inhibition at higher concentration. Shoot formation of diploid C. lanceolata was increased at lower pH and shoot growth was the highest (2.3 cm) at pH 3.8. Adventitious root formation was higher at lower pH. However, both the adventitious root formation and growth exhibited comparatively higher result at pH 5.8. Taken together, the levels of pH had an effect on shoot and root formation in diploid and tetraploid of C. lanceolata

  • PDF

Diversity and Phylogenetic Analysis of Fluorescent Pseudomonads Isolated from Soil-Root System of Red Pepper in Greenhouse (비닐하우스 고추재배지의 토양과 근계로부터 분리된 형광성 Pseudomonads의 계통 분류 및 다양성)

  • Kwon, Soon-Wo;Kim, Jong-Shik;Song, Jae-Kyeong;Ryu, Jin-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.275-282
    • /
    • 2000
  • Among the fluorescent pseudomonad isolates from soil- root system of red pepper in Chinju, Kyunsangnam-Do, the phylogenetic analysis for 35 isolates were conducted. The partial 16S ribosomal DNA sequences were used as taxonomic key for phylogenetic analyses, and these sequences were enabled to identification of the fluorescent pseudomonad isolates on the species level. The 17 isolates among them were classified into Pseudomonas putida group, and consisted of the strains isolated mainly from soil. This group were subdivided into 4 subgroups (I, II, III, and IV). The subgroup I and IV were unique ones which were relatively remotely related with subgroup II and III including the type strain of P. putida. The 15 isolates among 35 isolates were grouped along with the type strain of Pseudomonas fluorescens, and 3 isolate were characterized as intermediates of P. fluorescens and Pseudomonas chlororaphis. Most of strain isolateds from the rhizosphere soil and rhizoplane of red pepper were identified as P. fluorescens and closely related with each other. In this study, root of red pepper was supposed to be colonized by a specific strain or strains of P. fluorescens.

  • PDF

The Antitumor Effects of Selenium Compound $Na_5SeV_5O_{18}{\cdot}3H_2O$ in K562 Cell

  • Yang, Jun-Ying;Wang, Zi-Ren
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.859-865
    • /
    • 2006
  • With an approach to study the anti-tumor effects and mechanism of selenium compound, we investigated the anti-tumor activity and mechanism of $Na_5SeV_5O_{18}{\cdot}3H_2O$ (NaSeVO) in K562 cells. The results showed that $0.625{\sim}20\;mg/L$ NaSeVO could significantly inhibit the proliferation of K562 cells in vitro in a time- and concentration-dependent manner as determined by microculture tetrazolium (MTT) assay, the IC50 values were 14.41 (4.45-46.60) and 3.45 (2.29-5.22) mg/L after 48 hand 72 h treatment with NaSeVO respectively. In vivo experiments demonstrated that i.p. administration of 5, 10 mg/kg NaSeVO exhibited an significant inhibitory effect on the growth of transplantation tumor sarcoma 180 (S180) and hepatoma 22 (H22) in mice, with inhibition rate 26.8% and 58.4% on S180 and 31.3% and 47.4% on H22, respectively. Cell cycle studies indicated that the proportion of G0/G1 phase was increased at 2.5 mg/L while decreased at 10 mg/L after treatment for 24, 48 h. Whereas S phase was decreased at 2.5-5 mg/L and markedly increased at 10 mg/L after treatment for 48 h. After treatment for 24 h, 10 mg/L NaSeVO also markedly increased S and G2/M phases. Take together, the result clearly showed that NaSeVO markedly increased S and G2/M phases at 10 mg/L. The study of immunocytochemistry showed that the expression bcl-2 is significantly inhibited by 10 mg/L NaSeVO, and bax increased. Morphology observation also revealed typical apoptotic features. NaSeVO also significantly caused the accumulation of $Ca^{2+}$ and $Mg^{2+}$, reactive oxygen species (ROS) and the reduction of pH value and mitochondrial membrane potential in K562 cells as compared with control by confocal laser scanning microscope. These results suggest that NaSeVO has anti-tumor effects and its mechanism is attributed partially to apoptosis induced by the elevation of intracellular $Ca^{2+}$, $Mg^{2+}$ and ROS concentration, and a reduction of pH value and mitochondria membrane potential (MMP).

The morphology of Thalictrum L. in Korea (한국산 꿩의다리속(Thalictrum L.) 식물의 형태학적 연구)

  • Park , Seong-Jun;Park, Seon-Joo
    • Korean Journal of Plant Taxonomy
    • /
    • v.38 no.4
    • /
    • pp.433-458
    • /
    • 2008
  • This study were examined for their external morphological characters such as root, leaf, inflorescenses, flower, stamen, pistil, and fruit as to Korean Thalictrum L. and discussed taxanomic value of characters, and made out a new key. This study confirmed that specialized stems and roots type were divided into fibrous type, fibrous having a tuber type, long fusiform tuberous type, tuberoid type, rhizome type and stolon type. The stem were divided into two types based on existence and nonexistence of striate or pubescent. Leaves were usually 2-3-ternately and was divided into three types based on leaf apex, leaf base and number of lobe. Inflorescenses were divided into two type; corymb, panicle. Flower is bisexual, and don't have petal. It was divided from existence and nonexistence of calyx when it flowering. Especially, the stamens were divided from anther shape and apex shape, degree of dilation of filament, epidermic shape of filament etc., and the pistils were divided from glandular on ovary, length of carpel stipe etc.. The fruit is a achene and it was divided from achene shape, achene rib or wings, achene stipe length. This study suggest that useful characters for identifying section are degree of dilation of filament, anther shape, achene rib and wings, degree of dilation of achene. Also, roots, leaf shape, stamen and pistil shape, achene beak and achene length, achene and leaf hair appear to be useful characters for identifying species.