• Title/Summary/Keyword: key image

Search Result 1,413, Processing Time 0.022 seconds

MEDU-Net+: a novel improved U-Net based on multi-scale encoder-decoder for medical image segmentation

  • Zhenzhen Yang;Xue Sun;Yongpeng, Yang;Xinyi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1706-1725
    • /
    • 2024
  • The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.

Method for Conditional Access Control in Secured SVC Bitstream (암호화된 SVC 비트스트림에서 조건적 접근 제어 방법에 관한 연구)

  • Won, Yong-Geun;Bae, Tae-Meon;Ro, Yong-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.151-154
    • /
    • 2005
  • 본 논문에서는 스케일러블 멀티미디어 콘텐츠에 대한 조건적 접근제어가 가능한 암호화 방법을 제안한다. 현재 표준화가 진행중인 스케일러블 비디오 코딩방법인 JSVM(Joint Scalable Video Model)은 부호화한 동영상에 대해 공간, 시간, 품질의 스케일러빌리티(Scalability)를 지원하는데, 각 스케일러 빌리티를 고려한 조건적인 접근제어기술은 스케일러빌리티에 따라 사용자를 제한해야 하는 경우를 위해 필수적인 기술이다. 제안하는 방법은 공간, 시간, 품질의 세가지 스케일러빌리티를 지원하도록 부호화(Encoding)후 구성되는 NAL(Network Abstract Layer)을 지원하는 스케일러빌리티에 따라 구분하고, 구분된 NAL 의 종류에 따라 암호화 key 를 다르게 제공하는 방법을 통해 사용자의 접근제어 수준에 맞게 암호화 key 를 조합하는 방법을 적용하였다. 실험 결과 제안한 방법은 JSVM 에서 공간, 시간, 품질의 스케일러빌리티가 보장되고, 이때 생성되는 Key 의 조합으로 조건적 접근제어(Conditional access control)가 가능함을 확인하였다.

  • PDF

A Current Dynamic Analysis Based Open-Circuit Fault Diagnosis Method in Voltage-Source Inverter Fed Induction Motors

  • Tian, Lisi;Wu, Feng;Shi, Yi;Zhao, Jin
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.725-732
    • /
    • 2017
  • This paper proposed a real-time, low-cost, fast transistor open-circuit fault diagnosis method for voltage-source inverter fed induction motors. A transistor open-circuit changes the symmetry of the inverter topology, leading to different similarities among three phase load currents. In this paper, dynamic time warping is proposed to describe the similarities among load currents. The proposed diagnosis is independent of the system model and needs no extra sensors or electrical circuits. Both simulation and experimental results show the high efficiency of the proposed fault diagnosis method.

Security of Image Information using Steganography and QR Code in IoT (IoT에서 스테가노그라피와 QR 코드를 이용한 영상 정보의 보안)

  • Im, Yong-Soon;Kang, Eun-Young;Park, Jae-Pyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • The security of the image information is very important in many areas of the IoT(Internet of Things), and study a number of ways to display the security (copyright, etc.). In this paper, information of image that is used by the IoT is converted to a DCT(Discrete Cosine Transform) and QC(Quantization Coefficient). And watermark (message) is to create a new encoded message(WMQR) through a QR Code. QC and WMQR applies LSB steganography techniques, can get the security (copyright, etc.) of image information. LSB steganographic techniques may be inserted according to a message (Watermark) to determine the location (Secret Key). The encoded image is sent to the recipient via the Internet. The reverse process can be obtained image and a QR code, a watermark (Message). A method for extracting a watermark from the security of the image information is coded using only the image and Secret Key, through the DCT and quantization process, so obtained by separating the watermark (Message) for the image. In this paper, we were able to improve the security of the method of image information, the image quality of the image by the simulations (PSNR), in turn, benefits were also normalized correlation (NC) and security.

Optical security system using multi-phase separation and phase-wrapping method (다중 위상 분할과 위상 랩핑 방법을 이용한 광 암호화 시스템)

  • Shin Chang Mok;Kim Soo Joong;Seo Dong Hoan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.31-38
    • /
    • 2005
  • In this paper, we proposed an optical security system based on a gray-image exclusive-OR encryption using multi-phase separation and phase-wrapping method. For encryption, a gray image is sliced into binary images, which have the same pixel value, and these images are encrypted by modified XOR rules with binary random images. The XORed images and the binary images respectively combined and converted into full phase images, called an encrypted image and a key image. For decryption, when the encrypted image and key image are used as inputs on optical elements, Practically due to limited controllability of phase range in optical elements, the original gray image cannot be efficiently reconstructed by these optical elements. Therefore, by decreasing the phase ranges of the encrypted image and key image using a phase-wrapping method and separating these images into low-level phase images using multi-phase separation, the gray image can be reconstructed by optical elements which have limited control range. The decrytion process is simply implemented by interfering a multiplication result of encrypted image and key image with reference light. The validity of proposed scheme is verified and the effects, which are caused by phase limitation in decryption process, is analyzed by using computer simulations.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

Real-Time Non-Local Means Image Denoising Algorithm Based on Local Binary Descriptor

  • Yu, Hancheng;Li, Aiting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.825-836
    • /
    • 2016
  • In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.

An Adaptive Weighted Regression and Guided Filter Hybrid Method for Hyperspectral Pansharpening

  • Dong, Wenqian;Xiao, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.327-346
    • /
    • 2019
  • The goal of hyperspectral pansharpening is to combine a hyperspectral image (HSI) with a panchromatic image (PANI) derived from the same scene to obtain a single fused image. In this paper, a new hyperspectral pansharpening approach using adaptive weighted regression and guided filter is proposed. First, the intensity information (INT) of the HSI is obtained by the adaptive weighted regression algorithm. Especially, the optimization formula is solved to obtain the closed solution to reduce the calculation amount. Then, the proposed method proposes a new way to obtain the sufficient spatial information from the PANI and INT by guided filtering. Finally, the fused HSI is obtained by adding the extracted spatial information to the interpolated HSI. Experimental results demonstrate that the proposed approach achieves better property in preserving the spectral information as well as enhancing the spatial detail compared with other excellent approaches in visual interpretation and objective fusion metrics.

Automatic Matching of Multi-Sensor Images Using Edge Detection Based on Thinning Algorithm (세선화 알고리즘 기반의 에지검출을 이용한 멀티센서 영상의 자동매칭)

  • Shin, Sung-Woong;Kim, Jun-Chul;Oh, Kum-Hui;Lee, Young-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • This study introduces an automatic image matching algorithm that can be applied for the scale different image pairs consisting of the satellite pushbroom images and the aerial frame images. The proposed method is based on several image processing techniques such as pre-processing, filtering, edge thinning, interest point extraction, and key-descriptor matching, in order to enhance the matching accuracy and the processing speed. The proposed method utilizes various characteristics, such as the different geometry of image acquisition and the different radiometric characteristics, of the multi-sensor images. In addition, the suggested method uses the sensor model to minimize search area and eliminate false-matching points automatically.

Image Encryption and Decryption System using Frequency Phase Encoding and Phase Wrapping Method (주파수 위상 부호화와 위상 랩핑 방법을 이용한 영상 암호화 및 복호화 시스템)

  • Seo, Dong-Hoan;Shin, Chang-Mok;Cho, Kyu-Bo
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2006
  • In this paper, we propose an improved image encryption and fault-tolerance decryption method using phase wrapping and phase encoding in the frequency domain. To generate an encrypted image, an encrypting key which denotes the product of a phase-encoded virtual image, not an original image, and a random phase image is zero-padded and Fourier transformed and its real-valued data is phase-encoded. The decryption process is simply performed by performing the inverse Fourier transform for multiplication of the encrypted key with the decrypting key, made of the proposed phase wrapping method, in the output plane with a spatial filter. This process has the advantages of solving optical alignment and pixel-to-pixel mapping problems. The proposed method using the virtual image, which does not contain any information from the original image, prevents the possibility of counterfeiting from unauthorized people and also can be used as a current spatial light modulator technology by phase encoding of the real-valued data. Computer simulations show the validity of the encryption scheme and the robustness to noise of the encrypted key or the decryption key in the proposed technique.