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Abstract 
 
The goal of hyperspectral pansharpening is to combine a hyperspectral image (HSI) with a 
panchromatic image (PANI) derived from the same scene to obtain a single fused image. In 
this paper, a new hyperspectral pansharpening approach using adaptive weighted 
regression and guided filter is proposed. First, the intensity information (INT) of the HSI is 
obtained by the adaptive weighted regression algorithm. Especially, the optimization 
formula is solved to obtain the closed solution to reduce the calculation amount. Then, the 
proposed method proposes a new way to obtain the sufficient spatial information from the 
PANI and INT by guided filtering. Finally, the fused HSI is obtained by adding the 
extracted spatial information to the interpolated HSI. Experimental results demonstrate that 
the proposed approach achieves better property in preserving the spectral information as 
well as enhancing the spatial detail compared with other excellent approaches in visual 
interpretation and objective fusion metrics. 
 
 
Keywords: Hyperspectral image (HSI), panchromatic image (PANI), guided filter, 
adaptive weighted regression, hyperspectral pansharpening 

 
This work was supported by NSFC (No.61372069), National Defense Pre-research Foundation, SRF for ROCS, 
SEM (JY0600090102), “111” project (No. B08038) and the Fundamental Research Funds for the Central 
Universities. 
 
http://doi.org/10.3837/tiis.2019.01.019                                                                                                           ISSN : 1976-7277 



328         Dong et al.: An Adaptive Weighted Regression and Guided Filter Hybrid Method for Hyperspectral Pansharpening 

1. Introduction 

With the rapid development of remote sensing satellite science and technology, a variety 
of remote sensing sensors have acquired a large number of remote sensing images, which 
are widely used in weather forecasting, geological survey, marine environmental 
monitoring and other fields. However, due to the mutual restriction between spatial detail 
resolution and spectral resolution of remote sensing images acquired by optical sensors, it 
is a difficult problem to obtain images with both high spectral resolution and high spatial 
resolution under the condition of maintaining a certain SNR. Existing remote sensing 
satellites can only obtain hyperspectral image (HSI) or multispectral image (MSI) with low 
spatial resolution but high spectral resolution and panchromatic image (PANI) with little 
spectral information but comprehensive spatial information. However, the HSI and PANI 
often fail to meet the requirements of high spatial and spectral resolutions for application in 
remote sensing image classification, target detection and other fields. Therefore, the fusion 
of the PANI and HSI which is also called pansharpening is of great research and 
exploration significance to obtain remote sensing images that can simultaneously maintain 
high spatial resolution and comprehensive spectral information [1-3]. In recent years, 
hyperspectral pansharpening technology has received the attention of researchers and 
developed rapidly. 

In order to fuse the PANI and HSI and enhance the spatial resolution of HSI, many 
approaches have been presented. Component substitution (CS), e.g., Gram-Schmidt (GS) 
[4], intensity-hue-saturation (IHS) [5-6], principal component analysis (PCA) [7-9], and 
Gram-Schmidt Adaptive (GSA) [10] is one family of fusion algorithms. These CS methods 
rely on the projection of HSI to another space to separate spectral component and spatial 
component. The obtained spatial component is replaced with the PANI. The final fused 
HSI is generated by inverse transformation [3]. Although they have good spatial capacity 
[9-10], CS approaches generate a significant spectral distortion [11]. Another technique is 
multiresolution analysis (MRA), e.g., smoothing filter-based intensity modulation (SFIM) 
[12], MTF-Generalized Laplacian Pyramid (MTG) [13], and MTG with High Pass 
Modulation (MGH) [14]. An appropriate spatial filter is applied to the PANI in MRA class 
for generating spatial details. The obtained spatial component is added to HSI to obtain the 
fused HSI. Although the MRA approach has advantage of spectral and temporal 
consistency [15], the design of spatial filter is complicated and the computational burden is 
large. Model based approaches and hybrid approaches are also two classes of fusion 
algorithms [3]. Model based methods include the Matrix factorization algorithms such as 
coupled nonnegative matrix factorization (CNMF) [16]. These algorithms have a superior 
fusion effect, but they have large amount of calculation [17]. Hybrid approach combines 
two hyperspectral pansharpening algorithms to produce a new algorithm.  Guided filter 
PCA (GFPCA) is a typical representative of the hybrid approach [18]. GFPCA effectively 
reduce spectral distortion, but it generates some blur due to the insufficient spatial details 
[11]. Many multi-modality image fusion [19] and infrared image fusion methods [20] can 
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also be transplanted into hyperspectral remote sensing image. These fusion methods 
usually obtain excellent experimental results. 

This paper proposes a novel fusion approach based on adaptive weighted regression and 
guided filter. Compared with the traditional approaches, the proposed approach has 
following novelties. First, local similarity between multiple source images is an important 
issue in the process of extracting spatial information. The guided filter which is a 
local-based image filter has the potential to minimize the overlap spatial detail information 
between the intensity information (INT) and PANI. Therefore, the spectral distortion can 
be greatly reduced. Second, the guided filter is used for obtaining the variation tendency of 
INT and PANI in turn, in which INT and PANI serve as guided images respectively. In this 
way, the spectral distortion problem could be weakened obviously. The extracted spatial 
information depends not only on the HSI but also on the PANI, which ensures the data 
dependence. Third, the INT image which represents the approximate spatial layer of HSI is 
acquired via the adaptive weighted regression algorithm [10] instead of simple liner 
weighting, and we solve an optimized formula to acquire the weights to decrease 
calculation time. Comparative analyses indicate the presented approach outperforms other 
state-of-the-art approaches. 

The remainder of the paper is organized as follows. Section 2 explains the proposed 
fusion approach using the adaptive weighted regression method and guided filter. 
Experiments and their analyses are presented in section 3. Section 4 contains the 
conclusions. 

2. Proposed method 
Fig. 1 displays the schematic diagram of the proposed method. Synthetic intensity 
information (INT) is first obtained via the adaptive weighted regression algorithm, and an 
optimized formula is solved to obtain weighting coefficients. Then, detail information is 
acquired via utilizing the guided filter with PANI and INT serving as the guidance images. 
Finally, the fused HSI is generated through adding the acquired spatial information to the 
interpolated HSI. The detailed steps of the proposed approach are described as follows. 

2.1 Obtaining intensity information (INT) with adaptive weighted regression  
Since the original HSI and PANI have different sizes, upsampling is done on HSI to obtain 
the same size for both. The adaptive weighted regression method is used for obtaining the 
INT image of HSI which denotes an approximate spatial component of HSI. 
 

1

m

i i
i

INT HSUλ
=

=∑                                                         (1) 
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Fig. 1. Flowchart of the proposed approach. 

 
where HSU  is the interpolated HSI, m  is band number of HSI, iλ  is the weighting 
parameters, and iHSU  is the ith band of HSU. To decrease spectral distortion, the optimal 
set of weights ,...,{ }i i mλ  can be obatined by solving the optimization formula as follows: 
 

                
1

2

,..., 1
min

m

m

i i
i

PAN HSU
λ λ

λ
=

−∑                                               (2) 

 
where PAN denotes the PANI. We employ the least square method to solve the 
optimization function above.  
 

2( ) - ( - ) ( - )TJ PAN HSU PAN HSU PAN HSUλ λ λ λ= =                      (3) 
 
where 1 2[ , ,..., ]mλ λ λ λ= . Equation (3) is calculated the derivative with respect to λ , and 
Equation (3) can be denoted as 
 

( ) 0T THSU HSU HSU PANλ× × − × =                                           (4) 
 
The weight vector λ  can be obtained by calculating Equation (4).  
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1( )T THSU HSU HSU PANλ −= × × ×                                        (5) 
 
where each line corresponds to one band. n mHSU R ×∈  and 1nPAN R ×∈  denote the 
interploted HSI and PANI. n represents the total pixel number of one band. The 
optimization equation (2) is solved to get the closed-form solution. Since the optimization 
iterative steps are no longer done, the calculation amount is reduced. 

2.2 Extracting spatial details with guided filter 
To extract sufficient spatial information from the PANI and INT, a novel guided filter 
strategy is proposed. The guided filter [21] has successfully experimented for some image 
processing fields including flash/no-flash de-noising, compression, and so on [22-23]. The 
guided filter which possesses the fast realization is one effective edge-preserving filter. In 
this paper, a guided filter is first utilized to extract spatial details differences between PANI 
and INT. Considering that the spatial details differences between PANI and INT cannot 
completely represent the complete detail information, a guided filter is then utilized to 
capture spatial structure component serving as supplementary details from PANI. As 
shown in Fig. 1, the detail information is extracted as follows. 

1) A guided image filter is first performed on PANI with INT served as guidance image. 
It is assumed that the filtering output image GI is a linear transform of guidance image INT 
in a square area kΩ . 

 

i k i kGI a INT b= + , i k∀ ∈Ω                                                    (6) 
       
where iINT  and iGI  represent the thi  pixel intensity of INT and GI. Size of square 
window kΩ  is (2 1) (2 1)r r+ × +  and r  is an integer. ka  and kb  are permanent in the 
square window. They are obtained by computing a cost function and minimizing the 
squared difference between PANI and GI. 
 

2 2( , ) (( ) )
k

k k k i k i ki
E a b a INT b PAN aψ

∈Ω
= + − +∑                                 (7) 

where ψ  denotes the regularized parameter. Parameters ka  and kb  are calculated via 
linear regression [24]: 
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θ ψ

∈Ω
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Ω
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+

∑
                                                  (8) 

k k k kb PAN a µ= −                                                                (9) 
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where kµ  and 2
kθ   are mean and variance of INT, Ω  is pixel number in kΩ , and kPAN is 

mean of PANI. All overlapping windows kΩ  which cover the pixel i  have different values 
of ( , )k ka b . The value of the output image iGI  may vary when ( , )k ka b  are calculated in 
different square window. Thus, the average value of ka  and kb  for all the overlapping 
windows is calculated. The final guided filtered output image can be given as follows:  
       

i i i iGI a INT b= +                                                             (10) 
         

where 1
i

i kk
a a

∈Ω
=
Ω ∑  and 1

i
i kk

b b
∈Ω

=
Ω ∑ .  

For clarity, we represent this filtering process as:  
 

1 1( , )GI f PAN INT γ ε= ， ，                                                  (11) 
 
where f  denotes a guided filter function, 1γ  is filter size, and 1ε  is blur degree. Since the 
guidance image INT contains less details, we employ a relatively small 1γ  and 1ε . GI  
obtains the spatial information of the HSI, since guided filter transfers the spatial 
information from the guidance image to the output image. Therefore, the spatial details 
differences between HSI and PANI can be easily acquired by subtracting GI  from PANI. 
  

SD PAN GI= −                                                            (12) 
   
where SD  is the details differences between PANI and INT.  

2) In order to obtain enough spatial infromation and realize consistency, a guided filter is 
applied to INT with PANI served as a guidance image. The obtained details which is 
captured from the PANI is the supplementary information. Similar to the extraction details 
process above, this procedure can be described as: 
 

2 2( , )GP f INT PAN γ ε= ， ，                                               (13) 
 
where GP  represents the guided filtered output, 2γ  represents the filter size, and 2ε  
represents blur degree. Here, we employ a relatively large 2γ  and 2ε  since the guidance 
PANI contains enormous amount of spatial details.  

3) Then, the complete spatial information are obtained. 
 

1 2+sT SD GPβ β=                                                        (14) 
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where, 1β  and 2β  are the tradeoff parameters, and sT  is the total spatial details. The 
tradeoff parameters 1β  and 2β  ( 1 20 , 1β β< < ) command the amount of details which will 
be injected into the HSU image, and influence fusion performace directly. SD  that is the 
details differences between PANI and HSI need be added more, and GP  that is the 
supplementary details need be added less. So 1β   is the larger value that is approximate to 1, 
while 2β  is the smaller value that is close to 0. 

2.3 Generating the fused HSI 
The extracted complete spatial infromation is finally injected into the upsampled HSI to 
obtain the fused HSI. 
 

i i sF HSU T= +                                                          (15)  
 
where F is the fused HSI, iF  is the ith band of F . 

3. Experimental Results and Analysis 
The performance of several comparison algorithms and our method is evaluated by 
conducting the experiments on three datasets captured by different sensors. In this 
experiment, in addition to comparing the subjective performance according to the visual 
renderings, quality evaluation indexes are also used to objectively evaluate the 
performance of different methods. For the subjective evaluation, spatial quality can be 
judged visually, but it is difficult to notice the slight color changes only by the subjective 
evaluation aspect. The quality evaluation indexes can objectively compare the spatial and 
spectral quality of different methods. In order to verify the effectiveness of the proposed 
method, the results of the proposed method and several representative pansharpening 
methods, namely Gram-Schmidt (GS) [4], GS Adaptive (GSA) [10], principal component 
analysis (PCA) [7-9], guided filter PCA (GFPCA) [16], coupled nonnegative matrix 
factorization (CNMF) [14] and smoothing filter-based intensity modulation (SFIM) [12] 
methods, are mainly listed in this section. In the experiments, the filter size and the blur 
degree of the guided filter are set to 1 15γ = , 2 58γ = , and 6

1 2 10ε ε −= = . 

3.1 Quality measures 
For quantitative comparison, cross correlation (CC) [25], spectral angle mapper (SAM) 
[3]， erreur relative globale adimensionnelle de synthèse(ERGAS) [26] and root mean 
squared error (RMSE) [3] are utilized to assess the performance of different methods.  
Below, we provide the definitions of these indexes operating on the fused image 

m nFU R ×∈  and on the reference image m nR R ×∈ . m denotes the number of the bands, and 
n denotes the number of pixels. In the definitions, kFU  and kR  denote the thk  columns of 
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FU  and R , respectively. One column of the matrix corresponds to one spectral vector of 
HSI. iFU  and iR  denote the thi  row of FU  and R , respectively. Each band of HSI is 
mathematically represented as a row of the matrix. The matrices 1, nP Q R ×∈  represent two 
generic single-band images, lP  simply is the thl  pixel of P . 
(1) cross correlation (CC) 
CC is used to measure the degree of geometric distortion between the results obtained by 
different methods and the reference HSI. When the geometric distortion between the two 
images is smaller, the CC is closer to 1.  

1

1( , ) ( , )
m

i i

i
CC FU R CCS FU R

m =

= ∑                                         (16) 

where CCS simply is the cross correlation between two generic single-band images can be 
formulated as 

1

2 2
1 1

( )( )
( , )

( ) ( )

n
l P l Ql

n n
l P l Ql l

P Q
CCS P Q

P Q

µ µ

µ µ
=

= =

− −
=

− −

∑
∑ ∑

                                       (17)  

where 
1

1( ) n
P ll

Pnµ
=

= ∑ , and lP  represents the sample mean of P .  
(2) Spectral angle mapper (SAM) 
Spectral Angle Mapper (SAM) measures the average change in angle of all the spectral 
vectors. The closer the value of SAM is to 0, the less spectral distortion will be. It is defined 
as 

1

1( , ) ( , )
n

k k
k

SAM FU R SAM FU R
n =

= ∑                                          (18) 

where, given the spectral vectors , mM N R∈ , 

2 2

arccos( , )
,

SAM M N
M N

M N
=

 
  
 

                                                  (19)  

where , TM N M N=  is the mathematical representation of the inner product of M  and 
N . SAM is a spectral index. The smaller SAM is, the more similar the spectral of the 
pansharpening results is to that of the reference image. 
(3) Root mean squared error (RMSE) 
The RMSE which is a global index reflects the difference between FU and R. It can be 
formulated as follows 

( , )
*

FRMSE FU R
FU R

n m
=

−
                                                    (20) 

where (( ) ( ))T
F

FU R trance FU R FU R− = − −  represents the Frobenius norm. Lower 
value of RMSE indicates a better pansharpened image. 
(4) Erreur relative globale adimensionnelle de synthèse(ERGAS) 
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The ERGAS is a normalized version of RMSE. It is expressed as 

2

1

1( , ) 100 ( )
m

j

j j

RMSE
ERGAS FU R r

m µ=

= ∑                                     (21) 

where r  denotes the proportion between the spatial resolutions of PANI and HSI, is 
formulated as 

spatial resolution of PANr=
spatial resolution of HS

                                                   (22) 

where ( )j j
j F

RMSE FU R n= − , and jµ  is the sample mean of the thj  band of R.  
 
Table 1. Objective performance for the proposed method with different 1β  settings. ( 2 0.05β = ) 

1β  0.2 0.4 0.6 0.8 1 

CC 0.8892 0.9132 0.9251 0.9267 0.9203 

SAM 7.1534 7.0233 6.8310 6.8310 6.7835 

RMSE 373.0650 337.2362 312.5846 301.8611 306.5310 

ERGAS 5.0729 4.4433 3.7091 3.7091 3.7102 

Table 2. Objective performance for the proposed method with different 2β  settings. ( 1 0.8β = ) 

2β  
0 0.02 0.04 0.06 0.08 

CC 0.9269 0.9270 0.9268 0.9266 0.9262 

SAM 6.7802 6.7760 6.8106 6.8533 6.9032 

RMSE 301.7222 300.0954 300.7130 303.5613 308.5784 

ERGAS 3.8906 3.7859 3.7244 3.7035 3.7195 

 

3.2 Analysis of the influence of parameter 1 2,β β  

In the experiments, 1β  and 2β  are two parameters that control the amount of injection 
details. They influence the fusion result directly. In order to analyze the influence of 
parameters 1β  and 2β  ( 1 20 , 1β β≤ ≤ ) on the results more objectively and directly, we 
carry out experimental analysis on the Reflective Optics System Imaging (ROSIS) dataset, 
where the parameters of 1β  and 2β  are random variables. Considering the difference of 
spatial information between PANI and INT image takes a high proportion of the total 
spatial details, 1β  will be set to a relatively large value. Since the spatial details captured 
from PANI is served as the supplementary information, 2β  should be set to a small value. 
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As shown in Table 1, we first give 2β  a random value 0.05. According to the quality 
indexes measures, it is clearly that the performance of the proposed approach is increasing 
dramatically when 1β  is increased from 0.2 to 0.8. While it decreases when 1β  equals to 1. 
We can draw the conclusion that, when 1 0.8β = , the proposed algorithm obtains the good 
performance. In this situation, the values of 2β  are set to a range between 0 and 0.08. As 
shown in Table 2, It can be seen that when 2 0.02β = , our method can obtain relative 
optimal objective index. We have also performed the same experimental analysis on 
images acquired by a variety of different sensors. We found that 1 20.8, 0.02β β= = also 
give the best performance there. Therefore, 1 20.8, 0.02β β= =  are set to be the default 
parameters of the proposed method. 

3.3 Experimental results with the synthetic dataset 
To verify the validity of the algorithm, we experimented separately on the synthetic and 
real data sets. The first set of synthetic data for the experiment was collected by ROSIS [1]. 
The dataset is denoted as PaviaU dataset. The collected HSI covers the spectral range of 
0.4-0.9um, and each HSI used for experiment contains 103 bands. The results for the 
PaviaU dataset are presented in Fig. 2. The reference HSI is displayed in Fig. 2(a). The 
simulated HSI and PANI which are utilzed for comparing different pansharprning methods 
are generated by the Wald’s protocol [27]. The dimensions of the simulated HSI and PANI 
are 41 35×  and 205 175× , respectively.  
 

     
(a)                           (b)                          (c)                           (d)                          (e) 

     
(f)                           (g)                         (h)                           (i)                           (j) 

Fig. 2. Subjective visual comparison of PaviaU dataset (a) Reference HSI. (b) Simulated PANI. (c) 
Interpolated HSI. (d) GS. (e) GSA. (f) PCA. (g) GFPCA. (h) CNMF. (i) SFIM. (j) Proposed. 
 

The subjective visual images obtained by different comparision methods are presented 
in Fig. 2(d)–(j), respectively. On the basis of carefully analysing and comparing 
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experimental results with the interpolated HSI displayed in Fig. 2(c), we can draw a 
conclution that each pansharpening method improves the quality of HSI to varying degrees. 
Obviously, the GS method maintains the spectral information of the original HSI to the 
maximum extent. Careful observation of the GS result shown in Fig. 2(d) shows that the 
edge information of some buildings and vegetation is ambiguous. The GSA approach 
improves the quality of spatial information slightly, however, the result shown in Fig. 2(e) 
is suffered from severe spectral distortion. Similar to the GS method, the PCA method 
preserves the spectral information of the original HSI better, but the image texture is 
blurred due to the missing edge texture information of the target objects in the image (Fig. 
2 (f)). Although the GFPCA method is simple, the result shown in Fig. 2(g) is 
unsatisfactory in both spectral information preservation and edge texture information 
saturation. Fig. 2(h) shows that CNMF method injects too much spatial details into the 
target object in the image, making the target edge of the image looks too sharp. In addition, 
the spectral distortion of CNMF method on this data set is obvious. Fig. 2(i) and Fig. 2(j) 
show that both SFIM and the proposed methods have preserved the spectral information of 
the original HSI well. However, after careful comparison, it is not difficult to find that the 
image obtained by our method has clear texture, richer edge information and better target 
details compared with the result of SFIM.. 

 

Table 3. Quality metrics for Fig.2. ( 1 0.8β = , 2 0.02β = ) 

Indexes GS GSA PCA GFPCA CNMF SFIM Proposed 

CC 0.9062 0.9146 0.9265 0.7977 0.8743 0.9207 0.9270 

SAM 7.0372 7.2163 6.7748 9.1437 8.3256 6.7222 6.7456 

RMSE 354.7219 317.5397 327.5662 494.6062 381.7975 309.6550 300.1634 

ERGAS 4.8246 4.2080 4.3600 7.0291 5.0050 4.0244 3.7879 

 
Table 3 presents the results of objective quality evaluation indexes of different methods 

on PaviaU dataset. We look at the four metrics together to evaluate the spectral quality and 
spatial quality. For the convenience of comparison, the optimal values for the different 
methods under the same index are marked in bold. The proposed method achieves a good 
performance based on all four quality metrics, i.e., ranks first for the CC, RMSE, and 
ERGAS. The maximum CC value indicates that the spatial distortion of the result of the 
proposed method is minimal. The values of RMSE and ERGAS are the smallest which 
denotes that our method performs best overall. SAM of our method is slightly higher than 
that of SFIM method. The results displayed in Fig. 2(i)) and Fig. 2 (j) all preserve the 
spectral information well. However, the analysis about quantitative metrics shows that the 
proposed method provides the better spatial quality compared to the SFIM method. Those 
outstanding results are all helpful to demonstrate that our proposed algorithm provides the 
more superior fused result than the other six comparative methods. 
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Fig. 3. RMSE evaluation of each band of different methods. 

 
In order to compare the spectral preservation and spatial injection properties of different 

methods. Fig. 3 shows the RMSE evaluation of each band for different algorithms. Lower 
value of RMSE indicates a better pansharpened result. It can be observed that the proposed 
method has the lowest RMSE on almost every band, which validates the proposed method 
can obtain the excellent spectral preservation and spatial injection properties. 
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Fig. 4. Comparison of spectral radiance difference vectors obtained by different methods at one 

spatial location which is marked in Fig. 2(a). 
 

In order to more intuitively compare the spectral preservation properties of different 
methods, a spectral curve corresponding to the pixel marked yellow in Fig. 2(a) is 
extracted and the difference between the spectral vector of the result of each method at the 
same point and the spectral vector of the reference image at that point is shown in Fig. 4. 
We first draw a dotted line as the reference line for clarity. The spectral radiance difference 
vector of GFPCA algorithm changes a lot when it is compared with the dotted line. The 
proposed method is closest to the dotted line as a whole and has the smallest fluctuation 
range compared to other comparison methods, which validates the proposed method can 
obtain the outstanding spectral preservation performance.   
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The Moffett Field dataset [1] which is provided by Airborne Visible Infrared Image 
spectrometer (AVIRIS) is utilized for the second experiment to demonstrate the potential of 
the proposed method in synthetic datasets. These HSIs used in the experiment consist of 
176 bands in the spectrum of 0.4 2.5μm−  . The fused images of the Moffett Field dataset 
are presented in Fig. 5. Same as the first experiment, the synthetic PANI and HSI used in 
this experiment can be produced by Wald’s protocol [27]. The pixels of HSI and PANI are 
respectively 37 79× and 185 395× . 

 

     
(a)                          (b)                           (c)                             (d)                         (e) 

     
(f)                           (g)                          (h)                            (i)                            (j) 

Fig. 5. Subjective visual comparison of Moffett field dataset (a) Reference HSI. (b) Interpolated HSI. 
(c) Simulated PANI. (d) GS. (e) GSA. (f) PCA. (g) GFPCA. (h) CNMF. (i) SFIM. (j) Proposed. 
 
 Fig. 5 shows the reference HSI, synthetic HSI and PANI, as well as the results of 

different algorithms. In order to compare the advantages and disadvantages of different 
algorithms, we will analyze the differences in spectral preservation and edge texture details 
of the results obtained by different algorithms. Fig. 5(d)–(f) show that the color of both 
foreground targets and background information in the fused images obtained by GS, GSA, 
and PCA algorithms is darker than that of the reference one. In addition to the white region 
of the urban area, the spectral information of other regions is greatly different from that of 
the original HSI. In particular, the spectral distortion of PCA method is serious in the light 
region. The spatial quality of GS and GSA results in urban areas is very good, without edge 
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blur and halo. Obviously, the performance of GFPCA method in the Moffett Field dataset 
is very poor. From Fig. 5(g), it can be observed that the color distortion is serious, and the 
texture information is fuzzy. In particular, the ground object information in urban areas can 
not be distinguished. Fig. 5(h)–(j) reflect that the CNMF, SFIM and our proposed 
algorithms preserve the spectral information of the original HSI to the maximum extent. 
The colors of the three images in Fig. 5(h)–(j) are very close to the reference image in both 
rural and urban areas. However, it is not difficult to find that the edge information of 
ground objects in Fig. 5(h) and Fig. 5(i) obtained by CNFM and SFIM is fuzzy, especially 
the texture information of buildings in urban areas and river edges in rural areas. In contrast, 
the proposed method has great potential in spectral preservation and injects appropriate 
amount of spatial information. The fused image shown in Fig. 5(j) is neither blurred due to 
too little texture information nor too sharp due to too much injected spatial information. 
 

Table 4. Quality metrics for Fig. 4. (( 1 0.8β = , 2 0.02β = ) 

Indexes GS GSA PCA GFPCA CNMF SFIM Proposed 

CC 0.9172 0.9530 0.9066 0.9161 0.9563 0.9676 0.9720 

SAM 12.9589 10.4024 13.4512 11.3363 9.0464 7.8313 7.5671 

RMSE 420.5469 325.1781 445.1298 404.2979 309.9017 257.6388 247.2363 

ERGAS 7.2204 5.5938 7.6215 7.0619 5.3469 4.6072 4.1943 
 

Table 4 lists the numerical values of several objective quality evaluation indexes of 
different methods on Moffett field dataset. We look at the four metrics together to evaluate 
the spectral quality and spatial quality. From Table 4, the proposed algorithm yields the 
best values in all the quality indexes. The CC value is closest to 1, and the values of SAM, 
RMSE and ERGAS are the smallest. The SFIM algorithm ranked second. Quantitative 
analysis indicates that the proposed algorithm achieves the better color fidelity and spatial 
quality compared to other six fusion method. 
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Fig. 6. RMSE evaluation of each band of different methods. 
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To further compare the fusion performance of each method, the RMSE evaluation of 
each band versus the band number is shown in Fig. 6. The RMSE of the proposed 
algorithm and the RMSE of the SFIM almost coincide in the bands of 35-95, however, in 
the bands of 95-176, the RMSE values of our algorithm are significantly lower than that of 
the SFIM method. The RMSE comparison shows the outstanding spectral preservation and 
spatial injection properties of the proposed method. 
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Fig. 7. Comparison of spectral radiance difference vectors obtained by different methods at one 

spatial location which is marked in Fig. 5(a). 
 

Same as the first experiment, one random spatial location marked in red in Fig. 5(a) is 
also choosed to verify the spectral fidelity of different pansharpening algorithms. Fig. 7 
shows the comparison of the spectral radiance difference vectors between the reference 
HSI and the result of each method. From Fig. 7, it can be clearly observed that the spectral 
radiance difference vector of the proposed algorithm is almost coincides with the 
benchmark. The result validates that the proposed algorithm can preserve the spectral 
information of the original HSI to the greatest extent compared with other methods. 

3.4 Experimental results with the real dataset 
The first two experiments were carried out on the synthetic datasets. In order to prove that 
this method is also applicable to the real data set, we selected the Hyperion dataset [1] for 
the third experiment. Hyperion dataset has been obtained by the EO-1 spacecraft. The 
EO-1 spacecraft provides PANI with 10-m resolution and HSI with 30-m resolution. The 
sizes of PANI and HSI are 216 174× and 72 58× , respectively. The HSI used in the 
experiment contains 128 bands across the spectral range 0.4 2.5μm− . 

Fig. 8 exhibits a pair of Hyperion dataset and results of the seven comparison algorithms. 
Similarly, the edge and texture information of the target objects in Fig. 8 (d) (result of GS 
method) and Fig. 8 (f) (result of PCA method) are sufficient, but the spectral fidelity is poor. 
It can be clearly observed that the CNMF (Fig. 8 (h)), GSA (Fig. 8 (e)), SFIM (Fig. 8 (i)) 
and our algorithms (Fig. 8 (j)) generate results whose color well match with that of the 
original HS image, however, the CNMF, GSA and SFIM methods have the spatial 
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distortion of different degrees. From Fig. 8(g), we can observe that the result of GFPCA 
algorithm is seriously blurred since the edge and texture information of the target object is 
insufficient. Upon observation and analysis of the results obtained by different methods, it 
can be concluded that the performance of the proposed algorithm is superior to that of other 
comparision algorithms. The landscape structure is more salient and the spectral fidelity is 
better preserved in the pansharpening result of our algorithm compared with the other six 
methods. 
 

     
(a)                          (b)                           (c)                           (d)                           (e) 

     
(f)                           (g)                           (h)                           (i)                            (j) 

Fig. 8. Subjective visual comparison of Hyperion dataset (a) Low resolution HSI. (b) PANI. (c) 
Interpolated HSI.  (d) GS. (e) GSA. (f) PCA. (g) GFPCA. (h) CNMF. (i) SFIM. (j) Proposed. 

 
Similar to the previous experiment, two pixel points in Fig. 8(b) were randomly selected 

and marked with red to intuitively compare the spectral preservation performance of 
different algorithms. The comparison of the spectral radiance difference vectors between 
the reference HSI and the result of each algorithm is shown in Fig. 9. The dotted line is also 
served as benchmark. The spectral vector difference curves corresponding to the proposed 
method in Fig. 9(a) and Fig. 8(b) are the closest to the benchmark line, especially the curve 
of the proposed algorithm in Fig. 9(a) is almost fitted to the benchmark line, and its 
fluctuation is smaller than other curves, which further demonstrate that the outstanding 
spectral fidelity of our method. 
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Fig. 9. Comparison of spectral radiance difference vectors obtained by different methods at two 
spatial locations which are marked in Fig. 8(b). 

5. Conclusion 
We proposed a simple and effective hyperspectral pansharpening algorithm by combing 
the advantages of adaptive weighted regression and guided filter in this paper. The adaptive 
weighted regression method can effectively maintain the spatial information, whereas the 
guided filter has good behaviors near edges. More importantly, the proposed algorithm 
simultaneously considers the characteristics of PANI and HSI, and reduces the distortion 
by using the guided filter with PANI and the INT image serving as a guidance image 
respectively. The spatial information is extracted from PANI as well as HSI. Experiments 
performed on two synthetic HS datasets and one real HS dataset show that the proposed 
algorithm is a more effective algorithm in improving the edge and texture information  
while preserving the spectral information compared with other algorithms. In the future, 
how to adaptively select the coefficients 1 2( , )β β  can be further researched. 
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