• Title/Summary/Keyword: key image

Search Result 1,422, Processing Time 0.029 seconds

A Semi-fragile Image Watermarking Scheme Exploiting BTC Quantization Data

  • Zhao, Dongning;Xie, Weixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1499-1513
    • /
    • 2014
  • This paper proposes a novel blind image watermarking scheme exploiting Block Truncation Coding (BTC). Most of existing BTC-based watermarking or data hiding methods embed information in BTC compressed images by modifying the BTC encoding stage or BTC-compressed data, resulting in watermarked images with bad quality. Other than existing BTC-based watermarking schemes, our scheme does not really perform the BTC compression on images during the embedding process but uses the parity of BTC quantization data to guide the watermark embedding and extraction processes. In our scheme, we use a binary image as the original watermark. During the embedding process, the original cover image is first partitioned into non-overlapping $4{\times}4$ blocks. Then, BTC is performed on each block to obtain its BTC quantized high mean and low mean. According to the parity of high mean and the parity of low mean, two watermark bits are embedded in each block by modifying the pixel values in the block to make sure that the parity of high mean and the parity of low mean in the modified block are equal to the two watermark bits. During the extraction process, BTC is first performed on each block to obtain its high mean and low mean. By checking the parity of high mean and the parity of low mean, we can extract the two watermark bits in each block. The experimental results show that the proposed watermarking method is fragile to most image processing operations and various kinds of attacks while preserving the invisibility very well, thus the proposed scheme can be used for image authentication.

A Study on the BI Strategies for International Competitiveness of the Cosmetic Industry: A Focus on the Image Analysis and Design Development for the Uniforms of Korean Cosmetic Brands (화장품 산업 국제경쟁력 강화를 위한 BI 전략 연구: 화장품 브랜드의 유니폼 이미지 분석 및 디자인 개발을 중심으로)

  • Chung, Kyunghee;Lee, Misuk
    • Journal of Fashion Business
    • /
    • v.19 no.2
    • /
    • pp.103-117
    • /
    • 2015
  • The purpose of this study was to examine the uniform image of Korean herbal cosmetic brands amongst Korean and Chinese consumers. This study would enable us to explore a BI strategy to enhance international competitiveness of Korean herbal cosmetics brands. The results were as follows. The key words of BI pursued by Sulwhasoo were dignified, novel, graceful, soft, gaily, natural, Korean, modern, and international. Korean people felt that the uniform was graceful and soft, which accorded with Sulwhasoo BI, but also it was trite and dingy, indicating a negative and opposing image. On the other hand, Chinese people felt that the uniform was dignified, novel, graceful, natural, modern, and international, indicating that it matched with Sulwhasoo BI. In The History of Whoo, the key words of BI pursued by the brand were precious, soft, gorgeous, gaily, and natural. The Koreans felt that the uniform was intelligent, and decent, but conversely, it was also austere and dingy, indicating a negative image. The Chinese felt that the uniform was common, hard, austere, dingy, and unnatural, indicating an opposing image to BI. Finally, a uniform design was developed to improve on its problems, establish The History of Whoo's brand identity, and its brand image. First of all, 'The Quintessence : noble passion' was set up as a developmental concept. The textiles, clothing, and accessories were designed using the symbolic elements from The History of Whoo as a motif. Uniforms were developed for spring, fall, and summer.

Implementation of High-definition Digital Signage Reality Image Using Chroma Key Technique (크로마키 기법을 이용한 고해상도 디지털 사이니지 실감 영상 구현)

  • Moon, Dae-Hyuk
    • Journal of Industrial Convergence
    • /
    • v.19 no.6
    • /
    • pp.49-57
    • /
    • 2021
  • Digital Signage and multi-view image system are used as the 4th media to deliver stories and information due to their strong immersion. A content image displayed on large Digital Signage is produced with the use of computer graphics, rather than reality image. That is because the images shot for content making have an extremely limited range of production and their limitation to high resolution, and thereby have difficulty being displayed in a large and wide Digital Signage screen. In case of Screen X and Escape that employ the left and right walls of in the center a movie theater as a screen, images are shot with three cameras for Digital Cinema, and are screened in a cinema with multi-view image system after stitching work is applied. Such realistic images help viewers experience real-life content. This research will be able to display high-resolution images on Digital Signage without quality degradation by using the multi-view image making technique of Screen X and Chroma key technique are showed the high-resolution Digital Signage content making method.

On Recovering Erased RSA Private Key Bits

  • Baek, Yoo-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.11-25
    • /
    • 2018
  • While being believed that decrypting any RSA ciphertext is as hard as factorizing the RSA modulus, it was also shown that, if additional information is available, breaking the RSA cryptosystem may be much easier than factoring. For example, Coppersmith showed that, given the 1/2 fraction of the least or the most significant bits of one of two RSA primes, one can factorize the RSA modulus very efficiently, using the lattice-based technique. More recently, introducing the so called cold boot attack, Halderman et al. showed that one can recover cryptographic keys from a decayed DRAM image. And, following up this result, Heninger and Shacham presented a polynomial-time attack which, given 0.27-fraction of the RSA private key of the form (p, q, d, $d_p$, $d_q$), can recover the whole key, provided that the given bits are uniformly distributed. And, based on the work of Heninger and Shacham, this paper presents a different approach for recovering RSA private key bits from decayed key information, under the assumption that some random portion of the private key bits is known. More precisely, we present the algorithm of recovering RSA private key bits from erased key material and elaborate the formula of describing the number of partially-recovered RSA private key candidates in terms of the given erasure rate. Then, the result is justified by some extensive experiments.

Performance Analysis of Spiral Axicon Wavefront Coding Imaging System for Laser Protection

  • Haoqi Luo;Yangliang Li;Junyu Zhang;Hao Zhang;Yunlong Wu;Qing Ye
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.355-365
    • /
    • 2024
  • Wavefront coding (WFC) imaging systems can redistribute the energy of an interference laser spot on an image plane sensor by wavefront phase modulation and reduce the peak intensity, realizing laser protection while maintaining imaging functionality by leveraging algorithmic post-processing. In this paper, a spiral axicon WFC imaging system is proposed, and the performance for laser protection is investigated by constructing a laser transmission model. An Airy disk on an image plane sensor is refactored into a symmetrical hollow ring by a spiral axicon phase mask, and the maximum intensity can be reduced to lower than 1% and single-pixel power to 1.2%. The spiral axicon phase mask exhibits strong robustness to the position of the interference laser source and can effectively reduce the risk of sensor damage for an almost arbitrary lase propagation distance. Moreover, we revealed that there is a sensor hazard distance for both conventional and WFC imaging systems where the maximum single-pixel power reaches a peak value under irradiation of a power-fixed laser source. Our findings can offer guidance for the anti-laser reinforcement design of photoelectric imaging systems, thereby enhancing the adaptability of imaging systems in a complex laser environment. The laser blinding-resistant imaging system has potential applications in security monitoring, autonomous driving, and intense-laser-pulse experiments.

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

Deep Network for Detail Enhancement in Image Denoising (영상 잡음 제거에서의 디테일 향상을 위한 심층 신경망)

  • Kim, Sung Jun;Jung, Yong Ju
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.646-654
    • /
    • 2019
  • Image denoising is considered as a key factor for capturing high-quality photos in digital cameras. Thus far, several image denoising methods have been proposed in the past decade. In addition, previous studies either relied on deep learning-based approaches or used the hand-crafted filters. Unfortunately, the previous method mostly emphasized on image denoising regardless of preserving or recovering the detail information in result images. This study proposes an detail extraction network to estimate detail information from a noisy input image. Moreover, the extracted detail information is utilized to enhance the final denoised image. Experimental results demonstrate that the proposed method can outperform the existing works by a subjective measurement.

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.

CNN based Image Restoration Method for the Reduction of Compression Artifacts (압축 왜곡 감소를 위한 CNN 기반 이미지 화질개선 알고리즘)

  • Lee, Yooho;Jun, Dongsan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.676-684
    • /
    • 2022
  • As realistic media are widespread in various image processing areas, image or video compression is one of the key technologies to enable real-time applications with limited network bandwidth. Generally, image or video compression cause the unnecessary compression artifacts, such as blocking artifacts and ringing effects. In this study, we propose a Deep Residual Channel-attention Network, so called DRCAN, which consists of an input layer, a feature extractor and an output layer. Experimental results showed that the proposed DRCAN can reduced the total memory size and the inference time by as low as 47% and 59%, respectively. In addition, DRCAN can achieve a better peak signal-to-noise ratio and structural similarity index measure for compressed images compared to the previous methods.

A Privacy-preserving Image Retrieval Scheme in Edge Computing Environment

  • Yiran, Zhang;Huizheng, Geng;Yanyan, Xu;Li, Su;Fei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.450-470
    • /
    • 2023
  • Traditional cloud computing faces some challenges such as huge energy consumption, network delay and single point of failure. Edge computing is a typical distributed processing platform which includes multiple edge servers closer to the users, thus is more robust and can provide real-time computing services. Although outsourcing data to edge servers can bring great convenience, it also brings serious security threats. In order to provide image retrieval while ensuring users' data privacy, a privacy preserving image retrieval scheme in edge environment is proposed. Considering the distributed characteristics of edge computing environment and the requirement for lightweight computing, we present a privacy-preserving image retrieval scheme in edge computing environment, which two or more "honest but curious" servers retrieve the image quickly and accurately without divulging the image content. Compared with other traditional schemes, the scheme consumes less computing resources and has higher computing efficiency, which is more suitable for resource-constrained edge computing environment. Experimental results show the algorithm has high security, retrieval accuracy and efficiency.