• Title/Summary/Keyword: key component

Search Result 1,305, Processing Time 0.025 seconds

Optimization of Polyphenol Extraction Process from Native Soybean using Ultrasound (자생 희귀콩인 납떼기콩으로부터 초음파를 이용한 폴리페놀 성분의 추출 공정 최적화)

  • Kang, Hye Jung;Park, Junseong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.255-264
    • /
    • 2022
  • The active ingredients of Napttegi Kong(GML, Glycine max landrace), a type of native rare soybeans, were identified, and an ultrasonic extraction method was introduced as an eco-friendly extraction method. Through the component analysis of the Napttegi Kong extract, the epicatechin, which was not found in conventional soybeans, was identified. For effective extraction using ultrasonic, the main extraction conditions were optimized using the response surface analysis method. Through the Box-Behnken design process, 15 experiments were conducted with the extraction temperature, the ratio of extraction solvent/solution, and extraction time as key independent variables. A quadratic regression equation for the two dependent variables, epicatechin content and total isoflavone content, was derived, and the coefficients of determination were found to be high as R2 = 0.9939 and R2 = 0.9844, respectively, confirming that the correlation showed high significance. The extraction conditions satisfying the maximum expectations of these two dependent variables were predicted. to be 40.4℃ of extraction temperature, 19.3 times of extraction solvent/solution, and 91 sec of extraction time. The expected value and the actual experimental value of the epikatechin content and the total isoflavone content were similar, so it was confirmed that this experimental method is a highly reliable optimization model.

Enhanced Primary Production in Response to Freshwater Inflow in the Nakdong River Estuary: Characteristics of land-Ocean Coupling (LOC) (낙동강 하구에서 담수 유입에 따른 연안 클로로필-a 증가 : 낙동강의 육상-해양 coupling 패턴 분석)

  • KIM, SUHYUN;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.96-109
    • /
    • 2021
  • Since terrestrial input plays a major role in coastal primary production, an understanding of land-ocean coupling (LOC) is key to understand coastal ecological changes. In this study, the LOC has been classified into three stages (i.e., the baseflow, plume event and residual flow). In order to characterize its pattern in Nakdong River estuary, multi-platform data were obtained from remote sensing (geostationary ocean color image (GOCI)), in-situ measurement (marine environment information system (MEIS)), on-site measurement (discharge data and meteorological data). The MEIS data were grouped into three stages of LOC using principal component analysis (PCA), and the LOC (2013 ~ 2018) was examined at each stage using multi-platform data. In the Nakdong River estuary, the maximum value of chlorophyll-a (chl-a) was unexpectedly appeared during the plume event. It is assumed that there was no significant increase in turbidity, expected during the typical plume event, together with the weak flushing effect, caused the enhanced phytoplankton growth. Compared with other estuaries, LOC is common in estuaries affected by freshwater inflow, but LOC has different pattern depending on the size of the plume. While estuaries that form small plumes of about 10 km (low freshwater discharge and weak flushing effect) observed high chl-a in the plume event because the phytoplankton can response to the increased nutrient more rapidly. estuaries that form large plumes of more than 100 km est (high freshwater discharge and strong flushing effect) follow the typical LOC pattern conceptualized in this study (high chl-a in the residual flow).

Implementation of Real-time Sedentary Posture Correction Cushion Using Capacitive Pressure Sensor Based on Conductive Textile

  • Kim, HoonKi;Park, HyungSoo;Oh, JiWon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.153-161
    • /
    • 2022
  • Physical activities are decreasing and sitting time is increasing due to the automation, smartization, and intelligence of necessary household items throughout daily life. Recent healthcare studies have reported that the likelihood of obesity, diabetes, cardiovascular disease, and early death increases in proportion to sitting time. In this paper, we develop a sitting posture correction cushion in real time using capacitive pressure sensor based on conductive textile. It develops a pressure sensor using conductive textile, a key component of the posture correction cushion, and develops a low power-based pressure measurement circuit. It provides a function to transmit sensor values measured in real time to smartphones using BLE short-range wireless communication on the posture correction cushion, and develops a mobile application to check the condition of the sitting posture through these sensor values. In the mobile app, you can visualize your sitting posture and check it in real time, and if you keep it in the wrong posture for a certain period of time, you can notify it through an alarm. In addition, it is possible to visualize the sitting time and posture accuracy in a graph. Through the correction cushion in this paper, we experiment with how effective it is to correct the user's posture by recognizing the user's sitting posture, and present differentiation and excellence compared to other product.

Design of EMI reduction of Electric Vehicle Wireless Power Transfer Wireless Charging Control Module with Power Integrity and Signal Integrity (전원무결성과 신호무결성을 갖는 전기차 무선전력전송 무선충전컨트롤모듈 EMI 저감 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.452-460
    • /
    • 2021
  • As the global electric vehicle (EV) market expands, eco-friendly EV that complement performance and safety problems continue to be released and the market is growing. However, in the case of EVs, the inconvenience of charging, safety problems such as electric shock, and electromagnetic interference (EMI) problems caused by the interlocking of various electronic components are problems that must be solved in EVs. The use of wireless power transmission technology can solve the problem of safety by not dealing with high current and high voltage directly and solving the inconvenience of charging EVs. In this paper, in order to reduce EMI a wireless charging control module, which is a key electronic component of WPT of EV. EMI reduction was designed through simulation of problems such as resonance and impedance that may occur in the power supply and signal distortion between high-speed communication that may occur in the signal part. Therefore, through the EMI reduction design with power integrity and signal integrity, the WPT wireless charging control module for electric vehicles reduces 10 dBu V/m and 15 dBu V/m, respectively, in 800 MHz to 1 GHz bands and 1.5 GHz bnad.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

Research Trends on Improvement of Physicochemical Properties of Sulfonated Hydrocarbon Polymer-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 고분자 전해질 막의 물성 향상에 관한 연구동향)

  • Inhyeok, Hwang;Davin, Choi;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.427-441
    • /
    • 2022
  • Polymer electrolyte membrane (PEM) serving as a separator that can prevent the permeation of unreacted fuels as well as an electrolyte that selectively transports protons from the anode to the cathode has been considered a key component of polymer electrolyte membrane fuel cell (PEMFC). The perfluorinated sulfonic acid-based PEMs, represented by Nafion®, have been commercialized in PEMFC systems due to their high proton conductivity and chemical stability. Nevertheless, these PEMs have several inherent drawbacks including high manufacturing costs by the complex synthetic processes and environmental problems caused by producing the toxic gases. Although numerous studies are underway to address these drawbacks including the development of sulfonated hydrocarbon polymer-based PEMs (SHP-PEMs), which can easily control the polymer structures, further improvement of PEM performances and durability is necessary for practical PEMFC applications. Therefore, this study focused on the various strategies for the development of SHP-PEMs with outstanding performance and durability by 1) introducing cross-linked structures, 2) incorporating organic/inorganic composites, and 3) fabricating reinforced-composite membranes using porous substrates.

Assessing Middle School Students' Polar Literacy (중학생의 극지 소양 평가)

  • Haneul Choi;Donghee Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.169-183
    • /
    • 2023
  • This study analyzed students' polar literacy in an effort to promote polar education based on its high educational value. The polar literacy test items developed for this study consisted of questions about knowledge, skills, attitudes, and beliefs about the polar region, as well as background variables of students. The final test items, which were revised and supplemented several times through the preliminary test, were applied to 323 eighth graders in South Korea. We analyzed the response characteristics of the polar literacy questions for all students. Students were grouped into those with a global citizenship perspective and those with a pragmatic perspective, according to the viewpoint of polar issues and their polar literacy. Analysis showed that the students had a high understanding of climate change and living things in the polar regions, but had a very low understanding of ice, which is a key component of the polar regions. Moreover, they were unable to approach the Earth system thinking when dealing with polar issues. In addition, the global citizenship group had a higher intellectual understanding and deeper sympathy of the polar problem than the pragmatic group. This study is meaningful in that the survey results present a specific direction for future polar education.

A Study on the Development of Capacitor Exchange Type GDU of Propulsion Control Device of Electric Railway Vehicle Capable of Life Diagnosis (수명진단이 가능한 전기철도차량 추진제어장치의 커패시터 교환 형 GDU 개발에 관한 연구)

  • Kim, Sung Joon;Chae, Eun Kyung;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.475-484
    • /
    • 2018
  • The propulsion control device of an electric railway vehicle is a key main component corresponding to an engine of an automobile, and a device for controlling this is a device called a GDU (Gate Drive Unit). Also, when the frequency of failure of the propulsion control system was analyzed, the nonconformity ratio of GDU was the highest. GDU was not able to access core technologies due to the introduction of foreign products, and there were general problems with overall maintenance activities due to discontinuation of GDU of the manufacturer. The GDU has reached the end of its life with 23 to 14 years of long-term use.In order to solve these problems, this study was designed to identify the proper life span by analyzing compatible GDU's acquisition and failure, and to improve the existing system of maintenance focusing on health inspection. Maintenance of the components with a short life span compared to the entire service life is essential. Most foreign parts introduced at the beginning of the construction are not replaced due to technical problems or long-term operation. However, due to the characteristics of railway vehicles with a long life span of more than 25 years, it is necessary to maintain them for a long period of time. The study should be more concrete and empirical. The replacement type GDU of capacitors was able to easily measure the life of the capacitance by removing the capacitor modules, measure the life span of each unit test, and accurately perform preventive maintenance of the capacitor.

Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 7 Major Dam Watersheds in South Korea (NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 주요 7개 댐 유역의 융설 매개변수 추출)

  • Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.177-185
    • /
    • 2008
  • Accurate monitoring of snow cover is a key component for studying climate and global as well as for daily weather forecasting and snowmelt runoff modelling. The few observed data related to snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) were built for 7 major watersheds in South Korea. The decrease pattern of SCA for time (day) was expressed as exponentially decay function, and the determination coefficient was ranged from 0.46 to 0.88. The SCA decreased 70% to 100% from the maximum SCA when 10 days passed.

Lean Startup and New Product Innovation - Focused on Idol TWICE Case - (린스타트업과 신제품 혁신 - 아이돌 가수 트와이스 사례를 중심으로 -)

  • Kim, Jung-Rae
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.5
    • /
    • pp.47-57
    • /
    • 2019
  • New product innovation is a key component of a company's survival and sustained growth. With the rapidly changing market environment and global infinite competition, The importance of innovative new product development is growing. In the domestic entertainment industry, Competition is intensifying, and many companies are focusing on developing innovative new products in order to secure continuous competitive advantage in the era of global infinite competition. The problem is that as the intensity of competition increases and the idol production system develops more and more, The costs of planning and marketing are increasing. The fair trade commission estimated the cost of creating an idol group to be about 1 billion won, and some large entertainment companies claim that the investment cost is about 20 ~ 3 billion won. Lean startup is attracting attention as an innovation framework for sustainable competitive advantage of companies. But, there are not many related studies in Korea despite the growing interest. In particular, Case studies that can help to establish specific strategies are limited. Therefore, this study analyzed the successful case of JYP Entertainment's idol singer TWICE who succeeded in new product innovation and suggested practical implications. Theoretically, This study extended the Lean startup to the entertainment industry and suggested practical implications as the basic data for establishing the innovation strategies for the idol singers of domestic entertainment companies.