• 제목/요약/키워드: kernel-based method

검색결과 474건 처리시간 0.031초

나이브 베이스에서의 커널 밀도 측정과 상호 정보량 (Mutual Information in Naive Bayes with Kernel Density Estimation)

  • 샹총량;유샹루;강대기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.86-88
    • /
    • 2014
  • 나이브 베이스가 가지는 가정은 실세계 데이터를 분류함에 있어 해로운 효과를 보이곤 한다. 이러한 가정을 완화하기 위해, 우리는 Naive Bayes Mutual Information Attribute Weighting with Smooth Kernel Density Estimation (NBMIKDE) 접근 방법을 소개한다. NBMIKDE는 애트리뷰트를 위한 스무드 커널과 상호 정보량 측정값을 기반으로 하는 어트리뷰트 가중치 기법을 조합한 것이다.

  • PDF

NEW COMPLEXITY ANALYSIS OF IPM FOR $P_*({\kappa})$ LCP BASED ON KERNEL FUNCTIONS

  • Cho, Gyeong-Mi;Kim, Min-Kyung;Lee, Yong-Hoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.227-238
    • /
    • 2008
  • In this paper we extend primal-dual interior point algorithm for linear optimization (LO) problems to $P_*({\kappa})$ linear complementarity problems(LCPs) ([1]). We define proximity functions and search directions based on kernel functions, ${\psi}(t)=\frac{t^{p+1}-1}{p+1}-{\log}\;t$, $p{\in}$[0, 1], which is a generalized form of the one in [16]. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*({\kappa})$ LCPs. We show that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*({\kappa})$ LCPs have $O((1+2{\kappa})nlog{\frac{n}{\varepsilon}})$ complexity which is similar to the one in [16]. For small-update methods, we have $O((1+2{\kappa})\sqrt{n}{\log}{\frac{n}{\varepsilon}})$ which is the best known complexity so far.

  • PDF

커널 스펙트럼 모델 backfitting 기반의 로그 스펙트럼 진폭 추정을 적용한 배경음과 보컬음 분리 (Music and Voice Separation Using Log-Spectral Amplitude Estimator Based on Kernel Spectrogram Models Backfitting)

  • 이준용;김형국
    • 한국음향학회지
    • /
    • 제34권3호
    • /
    • pp.227-233
    • /
    • 2015
  • 본 논문은 커널 스펙트럼 모델 backfitting 기반의 로그 스펙트럼 진폭 추정부를 적용한 배경음과 보컬음 분리를 제안한다. 기존의 커널 스펙트럼 모델 기반의 배경음과 보컬음 분리는 추출하고자하는 객체의 모델을 기반으로 위너형태의 평균 제곱의 오차의 이득값을 학습함으로써 배경음과 보컬음을 분리하는 기술이다. 본 논문은 기존의 커널 스펙트럴 모델 기반의 배경음과 보컬음 분리 방식에서 위너형태의 이득값 대신 로그 스펙트럼 진폭 추정을 적용하여 기존 방식 보다 명료한 배경음과 보컬음을 추출한다. 실험결과는 본 논문에서 제안한 방식이 기존의 방식들보다 더 우수하다는 것을 보인다.

Kernel-Based Fuzzy Regression Machine For Predicting Turbulent Flows

  • 홍덕헌;황창하
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 춘계학술대회
    • /
    • pp.91-101
    • /
    • 2004
  • The turbulent flow is of fundamental interest because the conservation equations for thermodynamics, mass and momentum are linked together. This turbulent flow consists of some coherent time- and space-organized vortical structures. Research has already shown that some dynamic systems and experimental models still cannot provide a good nonlinear analysis of turbulent time series. In the real turbulent flow, very complicated nonlinear behaviors, which are affected by many vague factors are present. In this paper, a kernel-based machine for fuzzy nonlinear regression analysis is proposed to predict the nonlinear time series of turbulent flows. In order to show the practicality and usefulness of this model, we present an example of predicting the near-wall turbulence time series as a verifiable model and compare with fuzzy piecewise regression. The results of practical applications show that the proposed method is appropriate and appears to be useful in nonlinear analysis and in fuzzy environments to predict the turbulence time series.

  • PDF

A Comparison on the Differential Entropy

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권3호
    • /
    • pp.705-712
    • /
    • 2005
  • Entropy is the basic concept of information theory. It is well defined for random varibles with known probability density function(pdf). For given data with unknown pdf, entropy should be estimated. Usually, estimation of entropy is based on the approximations. In this paper, we consider a kernel based approximation and compare it to the cumulant approximation method for several distributions. Monte carlo simulation for various sample size is conducted.

  • PDF

Comparison of Edge Localization Performance of Moment-Based Operators Using Target Image Data

  • Seo, Suyoung
    • 대한원격탐사학회지
    • /
    • 제32권1호
    • /
    • pp.13-24
    • /
    • 2016
  • This paper presents a method to evaluate the performance of subpixel localization operators using target image data. Subpixel localization of edges is important to extract the precise shape of objects from images. In this study, each target image was designed to provide reference lines and edges to which the localization operators can be applied. We selected two types of moment-based operators: Gray-level Moment (GM) operator and Spatial Moment (SM) operator for comparison. The original edge localization operators with kernel size 5 are tested and their extended versions with kernel size 7 are also tested. Target images were collected with varying Camera-to-Object Distance (COD). From the target images, reference lines are estimated and edge profiles along the estimated reference lines are accumulated. Then, evaluation of the performance of edge localization operators was performed by comparing the locations calculated by each operator and by superimposing them on edge profiles. Also, enhancement of edge localization by increasing the kernel size was also quantified. The experimental result shows that the SM operator whose kernel size is 7 provides higher accuracy than other operators implemented in this study.

대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형 (Divide and conquer kernel quantile regression for massive dataset)

  • 방성완;김재오
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.569-578
    • /
    • 2020
  • 분위수 회귀모형은 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 특히 커널 분위수 회귀모형은 비선형 관계식을 고려하기 위하여 양정치 커널함수(kernel function)에 의해 만들어지는 재생 커널 힐버트 공간(reproducing kernel Hilbert space)에서 비선형 조건부 분위수 함수를 추정한다. 그러나 KQR은 이차계획법으로 공식화되어 많은 계산비용을 필요로 하므로 컴퓨터 메모리 능력의 제한으로 대용량 자료의 분석은 불가능하다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분할정복(divide and conquer) 알고리즘을 활용한 KQR 추정법(DC-KQR)을 제안한다. DC-KQR은 먼저 전체 훈련자료를 몇 개의 부분집합으로 무작위로 분할(divide)한 후, 각각의 부분집합에 대하여 KQR 분위수 함수를 추정하고 이들의 산술 평균을 이용하여 최종적인 추정량으로 통합(conquer)하는 기법이다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DC-KQR의 효율적인 성능과 활용 가능성을 확인하였다.

커널 기반 그리드 응용 모니터링 시스템의 개발 (The Development of Kernel-based Monitoring System for Grid Application)

  • 김태경;김동수;변옥환;정태명
    • 정보처리학회논문지C
    • /
    • 제11C권6호
    • /
    • pp.821-828
    • /
    • 2004
  • 그리드 응용이 수행되는데 필요한 네트워크 자원을 실시간으로 측정하고, 그에 대한 통계 데이터를 제공함으로 그리드 응용별 시스템 및 네트워크의 사용 자원의 양을 분석하기 위해서, 본 논문에서는 효율적인 모니터링 방법에 대한 연구를 수행하여, 커널을 기반으로 하는 모니터링 방법을 제안하였다. 이 방식을 이용한 성능 모니터링 측정의 장점은 tcpdump 등 기존의 패킷 캡처 방법에 비해서 시스템 자원을 적게 사용하면서 정확하면서도 적은 지연시간으로 측정이 가능하다는 것이다. 또한 이 모니터링 방법을 이용하여 실제 그리드 어플리케이션의 시스템 및 네트워크의 사용 정보량을 측정하는 시스템을 구현하였다. 이러한 연구는 그리드 응용 개발 및 그리드 네트워크 상의 자원할당 및 분배가 효율적으로 이루어 질 수 있도록 스케쥴러에게 필요한 정보를 제공할 수 있으며, 네트워크 관리자에게 그리드 네트워크 구축에 대한 근거 자료를 제시할 수 있다.

장식 테이블과 의미 있는 테이블 식별을 위한 커널 기반의 구조 자질 (Kernelized Structure Feature for Discriminating Meaningful Table from Decorative Table)

  • 손정우;고준호;박성배;김권양
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.618-623
    • /
    • 2011
  • 본 논문에서는 구조 정보를 활용하기 위한 결합 커널 기반의 의미 있는 웹 테이블과 장식 웹 테이블을 구분하는 새로운 방법을 제안한다. 본 논문에서 테이블의 구조 정보는 두 가지 형태의 구문 분석 트리로부터 추출된다. 컨텍스트 트리는 테이블 주변에 나타난 구조를 반영하고 있으며, 테이블 트리는 테이블 내의 구조를 담고 있다. 두 트리로 표현되는 테이블의 구조 정보를 효과적으로 다루기 위해 파스 트리 커널 기반의 결합 커널을 제안한다. 제안한 결합 커널을 적용한 support vector machines은 풍부한 구조 정보를 활용하여 의미 있는 테이블과 장식 테이블을 분류한다.

Kernel Estimation of Hazard Ratio Based on Censored Data

  • 최명희;이인석;송재기
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.125-143
    • /
    • 2001
  • We, in this paper, propose a kernel estimator of hazard ratio with censored survival data. The uniform consistency and asymptotic normality of the proposed estimator are proved by using counting process approach. In order to assess the performance of the proposed estimator, we compare the kernel estimator with Cox estimator and the generalized rank estimators of hazard ratio in terms of MSE by Monte Carlo simulation. Two examples are illustrated for our results.

  • PDF