• Title/Summary/Keyword: kernel ridge regression

Search Result 9, Processing Time 0.041 seconds

Censored Kernel Ridge Regression

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1045-1052
    • /
    • 2005
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The weighted data are formed by redistributing the weights of the censored data to the uncensored data. Then kernel ridge regression can be taken up with the weighted data. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized approximate cross validation(GACV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

  • PDF

On Predicting with Kernel Ridge Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 2003
  • Kernel machines are used widely in real-world regression tasks. Kernel ridge regressions(KRR) and support vector machines(SVM) are typical kernel machines. Here, we focus on two types of KRR. One is inductive KRR. The other is transductive KRR. In this paper, we study how differently they work in the interpolation and extrapolation areas. Furthermore, we study prediction interval estimation method for KRR. This turns out to be a reliable and practical measure of prediction interval and is essential in real-world tasks.

  • PDF

A study on semi-supervised kernel ridge regression estimation (준지도 커널능형회귀모형에 관한 연구)

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.341-353
    • /
    • 2013
  • In many practical machine learning and data mining applications, unlabeled data are inexpensive and easy to obtain. Semi-supervised learning try to use such data to improve prediction performance. In this paper, a semi-supervised regression method, semi-supervised kernel ridge regression estimation, is proposed on the basis of kernel ridge regression model. The proposed method does not require a pilot estimation of the label of the unlabeled data. This means that the proposed method has good advantages including less number of parameters, easy computing and good generalization ability. Experiments show that the proposed method can effectively utilize unlabeled data to improve regression estimation.

Kernel Ridge Regression with Randomly Right Censored Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

Study on the ensemble methods with kernel ridge regression

  • Kim, Sun-Hwa;Cho, Dae-Hyeon;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.375-383
    • /
    • 2012
  • The purpose of the ensemble methods is to increase the accuracy of prediction through combining many classifiers. According to recent studies, it is proved that random forests and forward stagewise regression have good accuracies in classification problems. However they have great prediction error in separation boundary points because they used decision tree as a base learner. In this study, we use the kernel ridge regression instead of the decision trees in random forests and boosting. The usefulness of our proposed ensemble methods was shown by the simulation results of the prostate cancer and the Boston housing data.

Stacking Kernel Ridge Regression Network for Smart Phone's Touch-Stroke Continuous Authentication (스마트 폰의 터치 스트로크 지속적 인증을 위한 스태킹 커널 릿지 리그레션 네트워크)

  • Chang, Inho;Teoh, Andrew Beng-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.381-383
    • /
    • 2018
  • 이 논문은 스마트 폰에서 터치 스트로크를 이용하여 지속적 인증을 할 수 있는 딥 러닝 네트워크인 스태킹 커널 릿지 리그레션 네트워크 (Stacking Kernel Ridge Regression Network: SKRRN)에 대한 연구이다. SKRRN 은 여러 개의 커널 릿지 리그레션 (Kernel Ridge Regression: KRR) 으로 구성되어있고, 계층적이며 모든 KRR 은 해석적이고 독립적으로 훈련된다. SKRRN 은 다른 딥 러닝 네트워크와는 다르게 비가공 터치 스트로크 데이터로부터 특징을 배우지 않고 Hand-Crafted 피처와 같이 추출된 데이터로부터 재학습을 한다. 이러한 재학습은 기존 데이터 셋을 더 구별 하기 쉽고 풍부하게 만들어준다. SKRRN 은 HMOG 데이터 셋을 사용하여 4.295%의 동일 오류율을 달성하였다.

Ensemble approach for improving prediction in kernel regression and classification

  • Han, Sunwoo;Hwang, Seongyun;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.355-362
    • /
    • 2016
  • Ensemble methods often help increase prediction ability in various predictive models by combining multiple weak learners and reducing the variability of the final predictive model. In this work, we demonstrate that ensemble methods also enhance the accuracy of prediction under kernel ridge regression and kernel logistic regression classification. Here we apply bagging and random forests to two kernel-based predictive models; and present the procedure of how bagging and random forests can be embedded in kernel-based predictive models. Our proposals are tested under numerous synthetic and real datasets; subsequently, they are compared with plain kernel-based predictive models and their subsampling approach. Numerical studies demonstrate that ensemble approach outperforms plain kernel-based predictive models.

A Derivation of a Hydrograph by Using Smoothed Dimensionless Unit Kernel Function (평활화된 무차원 단위핵함수를 이용한 단위도의 유도)

  • Seong, Kee-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.6
    • /
    • pp.559-564
    • /
    • 2008
  • A practical method is derived for determining the unit hydrograph and S-curve from complex storm events by using a smoothed unit kernel approach. The using a unit kernel yields more convenient way of constructing a unit hydrograph and its S-curve than a conventional method. However, with use of real data, the unit kernel oscillates and is unstable so that a unit hydrograph and S-curve cannot easily obtained. The use of non-parametric ridge regression with a Laplacian matrix is suggested for deriving an event averaged unit kernel which reduces the computational efforts when dealing with the Nash instantaneous unit hydrograph as a basis of the kernel. A method changing the unit hydrograph duration is also presented. The procedure shown in this work will play an efficient role when any unit hydrograph works is involved.

Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete

  • Prem, Prabhat Ranjan;Thirumalaiselvi, A.;Verma, Mohit
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.7-17
    • /
    • 2019
  • The complex phenomenon of the bond formation in geopolymer is not well understood and therefore, difficult to model. This paper present applied statistical models for evaluating the compressive strength of geopolymer. The applied statistical models studied are divided into three different categories - linear regression [least absolute shrinkage and selection operator (LASSO) and elastic net], tree regression [decision and bagging tree] and kernel methods (support vector regression (SVR), kernel ridge regression (KRR), Gaussian process regression (GPR), relevance vector machine (RVM)]. The performance of the methods is compared in terms of error indices, computational effort, convergence and residuals. Based on the present study, kernel based methods (GPR and KRR) are recommended for evaluating compressive strength of Geopolymer concrete.