• 제목/요약/키워드: kernel quantile regression

검색결과 16건 처리시간 0.02초

M-quantile regression using kernel machine technique

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.973-981
    • /
    • 2010
  • Quantile regression investigates the quantiles of the conditional distribution of a response variable given a set of covariates. M-quantile regression extends this idea by a "quantile-like" generalization of regression based on influence functions. In this paper we propose a new method of estimating M-quantile regression functions, which uses kernel machine technique. Simulation studies are presented that show the finite sample properties of the proposed M-quantile regression.

Support vector quantile regression for autoregressive data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1539-1547
    • /
    • 2014
  • In this paper we apply the autoregressive process to the nonlinear quantile regression in order to infer nonlinear quantile regression models for the autocorrelated data. We propose a kernel method for the autoregressive data which estimates the nonlinear quantile regression function by kernel machines. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of quantile regression function in the presence of autocorrelation between data.

대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형 (Divide and conquer kernel quantile regression for massive dataset)

  • 방성완;김재오
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.569-578
    • /
    • 2020
  • 분위수 회귀모형은 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 특히 커널 분위수 회귀모형은 비선형 관계식을 고려하기 위하여 양정치 커널함수(kernel function)에 의해 만들어지는 재생 커널 힐버트 공간(reproducing kernel Hilbert space)에서 비선형 조건부 분위수 함수를 추정한다. 그러나 KQR은 이차계획법으로 공식화되어 많은 계산비용을 필요로 하므로 컴퓨터 메모리 능력의 제한으로 대용량 자료의 분석은 불가능하다. 이러한 문제점을 해결하기 위하여 본 논문에서는 분할정복(divide and conquer) 알고리즘을 활용한 KQR 추정법(DC-KQR)을 제안한다. DC-KQR은 먼저 전체 훈련자료를 몇 개의 부분집합으로 무작위로 분할(divide)한 후, 각각의 부분집합에 대하여 KQR 분위수 함수를 추정하고 이들의 산술 평균을 이용하여 최종적인 추정량으로 통합(conquer)하는 기법이다. 본 논문에서는 모의실험과 실제자료 분석을 통해 제안한 DC-KQR의 효율적인 성능과 활용 가능성을 확인하였다.

소지역 추정을 위한 M-분위수 커널회귀 (M-quantile kernel regression for small area estimation)

  • 심주용;황창하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권4호
    • /
    • pp.749-756
    • /
    • 2012
  • 소지역 추정을 위해 널리 사용되고 있는 방법 중 하나는 선형혼합효과모형이다. 그러나 종속변수와 독립변수 사이의 관계가 비선형일 때 이 모형은 소지역 관련 모수에 대해 편의된 추정값을 초래한다. 본 논문에서는 M-분위수 커널회귀를 사용하여 소지역의 평균을 추정하는 방법을 제안한다. 그리고 모의실험을 통하여 서포트벡터분위수회귀와 성능을 비교함으로써 제안된 방법의 우수성을 보인다.

커널 제약식을 이용한 다중 비교차 분위수 함수의 순차적 추정법 (Stepwise Estimation for Multiple Non-Crossing Quantile Regression using Kernel Constraints)

  • 방성완;전명식;조형준
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.915-922
    • /
    • 2013
  • 분위수 회귀는 반응변수의 조건부 분위수 함수를 추정함으로써 반응변수와 예측변수의 관계에 대한 포괄적인 정보를 제공한다. 그러나 여러 개의 분위수 함수를 개별적으로 추정하게 되면 이들이 서로 교차할 가능성이 있으며, 이러한 분위수 함수의 교차(quantile crossing) 현상 분위수의 이론적 기본 특성에 위배된다. 본 논문에서는 다중 비교차 분위수 함수의 추정을 위해 커널 계수에 제약식을 부여하는 순차적 추정법을 제안하였으며, 모의실험을 통해 제안한 방법론의 효율적인 성능과 유용성을 확인하였다.

Semisupervised support vector quantile regression

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.517-524
    • /
    • 2015
  • Unlabeled examples are easier and less expensive to be obtained than labeled examples. In this paper semisupervised approach is used to utilize such examples in an effort to enhance the predictive performance of nonlinear quantile regression problems. We propose a semisupervised quantile regression method named semisupervised support vector quantile regression, which is based on support vector machine. A generalized approximate cross validation method is used to choose the hyper-parameters that affect the performance of estimator. The experimental results confirm the successful performance of the proposed S2SVQR.

Expected shortfall estimation using kernel machines

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.625-636
    • /
    • 2013
  • In this paper we study four kernel machines for estimating expected shortfall, which are constructed through combinations of support vector quantile regression (SVQR), restricted SVQR (RSVQR), least squares support vector machine (LS-SVM) and support vector expectile regression (SVER). These kernel machines have obvious advantages such that they achieve nonlinear model but they do not require the explicit form of nonlinear mapping function. Moreover they need no assumption about the underlying probability distribution of errors. Through numerical studies on two artificial an two real data sets we show their effectiveness on the estimation performance at various confidence levels.

Support vector quantile regression for longitudinal data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.309-316
    • /
    • 2010
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among response and input variables. In this paper we propose a weighted SVQR for the longitudinal data. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are the presented, which illustrate the performance of the proposed SVQR.

비대칭 라플라스 분포를 이용한 분위수 회귀 (Quantile regression using asymmetric Laplace distribution)

  • 박혜정
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.1093-1101
    • /
    • 2009
  • 분위수 회귀모형은 확률변수들 사이에 확률적인 관계구조를 포함한 함수 모형을 좀 더 완벽하게 추정하도록 제공한다. 본 논문에서는 함수 추정에 로버스트하다고 알려져 있는 서포트벡터기계 기법과 이중벌칙커널기계를 이용하여 분위수 회귀모형을 추정하고자 한다. 이중벌칙커널기계는 고차원의 입력변수에 대한 분위수 회귀가 요구될 때 분위수 회귀모형을 잘 추정한다고 알려져 있다. 또한 본 논문에서는 광범위한 형태의 분위수 회귀모형 추정을 위해서 정규분포보다 비대칭 라플라스 분포를 이용한다. 본 논문에서 제안한 모형은 분위수 회귀모형 추정을 위해서 서포트벡터기계 기법에 이중벌칙커널기계를 이용하여 각각의 평균과 분산을 동시에 추정한다. 평균과 분산함수 추정을 위해 사용된 커널함수의 모수들은 최적의 값을 찾기 위해 일반화근사 교차타당성을 이용한다.

  • PDF

Support vector quantile regression ensemble with bagging

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권3호
    • /
    • pp.677-684
    • /
    • 2014
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. To improve the estimation performance of SVQR we propose to use SVQR ensemble with bagging (bootstrap aggregating), in which SVQRs are trained independently using the training data sets sampled randomly via a bootstrap method. Then, they are aggregated to obtain the estimator of the quantile regression function using the penalized objective function composed of check functions. Experimental results are then presented, which illustrate the performance of SVQR ensemble with bagging.