• Title/Summary/Keyword: kNN분류기

Search Result 90, Processing Time 0.026 seconds

Eye Tracking Using Neural Network and Mean-shift (신경망과 Mean-shift를 이용한 눈 추적)

  • Kang, Sin-Kuk;Kim, Kyung-Tai;Shin, Yun-Hee;Kim, Na-Yeon;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In this paper, an eye tracking method is presented using a neural network (NN) and mean-shift algorithm that can accurately detect and track user's eyes under the cluttered background. In the proposed method, to deal with the rigid head motion, the facial region is first obtained using skin-color model and con-nected-component analysis. Thereafter the eye regions are localized using neural network (NN)-based tex-ture classifier that discriminates the facial region into eye class and non-eye class, which enables our method to accurately detect users' eyes even if they put on glasses. Once the eye region is localized, they are continuously and correctly tracking by mean-shift algorithm. To assess the validity of the proposed method, it is applied to the interface system using eye movement and is tested with a group of 25 users through playing a 'aligns games.' The results show that the system process more than 30 frames/sec on PC for the $320{\times}240$ size input image and supply a user-friendly and convenient access to a computer in real-time operation.

Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach (온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여)

  • Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.97-117
    • /
    • 2020
  • Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.

Automatic Facial Expression Recognition using Tree Structures for Human Computer Interaction (HCI를 위한 트리 구조 기반의 자동 얼굴 표정 인식)

  • Shin, Yun-Hee;Ju, Jin-Sun;Kim, Eun-Yi;Kurata, Takeshi;Jain, Anil K.;Park, Se-Hyun;Jung, Kee-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.60-68
    • /
    • 2007
  • In this paper, we propose an automatic facial expressions recognition system to analyze facial expressions (happiness, disgust, surprise and neutral) using tree structures based on heuristic rules. The facial region is first obtained using skin-color model and connected-component analysis (CCs). Thereafter the origins of user's eyes are localized using neural network (NN)-based texture classifier, then the facial features using some heuristics are localized. After detection of facial features, the facial expression recognition are performed using decision tree. To assess the validity of the proposed system, we tested the proposed system using 180 facial image in the MMI, JAFFE, VAK DB. The results show that our system have the accuracy of 93%.

  • PDF

The Design of Feature Selecting Algorithm for Sleep Stage Analysis (수면단계 분석을 위한 특징 선택 알고리즘 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.207-216
    • /
    • 2013
  • The aim of this study is to design a classifier for sleep stage analysis and select important feature set which shows sleep stage well based on physiological signals during sleep. Sleep has a significant effect on the quality of human life. When people undergo lack of sleep or sleep-related disease, they are likely to reduced concentration and cognitive impairment affects, etc. Therefore, there are a lot of research to analyze sleep stage. In this study, after acquisition physiological signals during sleep, we do pre-processing such as filtering for extracting features. The features are used input for the new combination algorithm using genetic algorithm(GA) and neural networks(NN). The algorithm selects features which have high weights to classify sleep stage. As the result of this study, accuracy of the algorithm is up to 90.26% with electroencephalography(EEG) signal and electrocardiography(ECG) signal, and selecting features are alpha and delta frequency band power of EEG signal and standard deviation of all normal RR intervals(SDNN) of ECG signal. We checked the selected features are well shown that they have important information to classify sleep stage as doing repeating the algorithm. This research could use for not only diagnose disease related to sleep but also make a guideline of sleep stage analysis.

Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition (자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템)

  • Kim, Kyeong-Tae;Choi, Jae-Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.47-55
    • /
    • 2018
  • In this paper, we propose a novel face recognition(FR) method that takes advantage of combining weighted deep local features extracted from multiple Deep Convolutional Neural Networks(DCNNs) learned with a set of facial local regions. In the proposed method, the so-called weighed deep local features are generated from multiple DCNNs each trained with a particular face local region and the corresponding weight represents the importance of local region in terms of improving FR performance. Our weighted deep local features are applied to Joint Bayesian metric learning in conjunction with Nearest Neighbor(NN) Classifier for the purpose of FR. Systematic and comparative experiments show that our proposed method is robust to variations in pose, illumination, and expression. Also, experimental results demonstrate that our method is feasible for improving face recognition performance.

Effects of Aprotinin on Postoperative Bleeding and Blood Coagulation System in Pediatric Open Heart Surgery (소아개심술시 아프로티닌이 술후 출혈 및 혈액응고계에 미치는 영향)

  • 신윤철;전태국
    • Journal of Chest Surgery
    • /
    • v.29 no.3
    • /
    • pp.303-310
    • /
    • 1996
  • From December of 1994 to April of 1995, we, SHUH Department of Pediatric Thoracic and Cardiovascular Surgery, studied effects of aprotinin. 95 patients were randomly divided into two groups : group I (n=47) with aprotinin and group ll (n=48) without aprotinin. Aprotinin was given as one shot injection to cardiopulmonary bypass perfusion solution with dose of 50,000 KIUikg. Laboratory data such as hemoglobin, hematocrit, BUH, creatinine, fibrinogen, electrolyte concentration, aPTT, PT, and AT R was checked preoperatively, 5 minutes after anesthesia, 5 minutes and 35 minutes after CPB circulation, and 5 minutes, 3 hours, and 24 hours after reperfusion. Also, chest-tube drainage, transfused amount of RBC, platelet concentrate, and fresh frozen plasma within first 24 hours postoperatively were checked and analyzed after transition nn body weight demension. Only RBC transfused postoperatively had statistical significance with P value of less than 0.001. Others had no difference statistical wise. Postoperative side effects of aprotinin was not detected weeks after the surgery and there was no reoperated patient due to postoperative bleeding.

  • PDF

Hand Gesture Recognition Regardless of Sensor Misplacement for Circular EMG Sensor Array System (원형 근전도 센서 어레이 시스템의 센서 틀어짐에 강인한 손 제스쳐 인식)

  • Joo, SeongSoo;Park, HoonKi;Kim, InYoung;Lee, JongShill
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.371-376
    • /
    • 2017
  • In this paper, we propose an algorithm that can recognize the pattern regardless of the sensor position when performing EMG pattern recognition using circular EMG system equipment. Fourteen features were extracted by using the data obtained by measuring the eight channel EMG signals of six motions for 1 second. In addition, 112 features extracted from 8 channels were analyzed to perform principal component analysis, and only the data with high influence was cut out to 8 input signals. All experiments were performed using k-NN classifier and data was verified using 5-fold cross validation. When learning data in machine learning, the results vary greatly depending on what data is learned. EMG Accuracy of 99.3% was confirmed when using the learning data used in the previous studies. However, even if the position of the sensor was changed by only 22.5 degrees, it was clearly dropped to 67.28% accuracy. The accuracy of the proposed method is 98% and the accuracy of the proposed method is about 98% even if the sensor position is changed. Using these results, it is expected that the convenience of the users using the circular EMG system can be greatly increased.

Implementation of a Non-Invasive Sensor System for Differentiating Human Motions on a Bed (침대에서 동작 식별을 위한 비침습식 센서 시스템의 구현)

  • Cho, Seung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2014
  • In this paper, we propose an efficient dynamic workload balancing strategy which improves the performance of high-performance computing system. The key idea of this dynamic workload balancing strategy is to minimize execution time of each job and to maximize the system throughput by effectively using system resource such as CPU, memory. Also, this strategy dynamically allocates job by considering demanded memory size of executing job and workload status of each node. If an overload node occurs due to allocated job, the proposed scheme migrates job, executing in overload nodes, to another free nodes and reduces the waiting time and execution time of job by balancing workload of each node. Through simulation, we show that the proposed dynamic workload balancing strategy based on CPU, memory improves the performance of high-performance computing system compared to previous strategies.

Application and Performance Analysis of Machine Learning for GPS Jamming Detection (GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석)

  • Jeong, Inhwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • As the damage caused by GPS jamming has been increased, researches for detecting and preventing GPS jamming is being actively studied. This paper deals with a GPS jamming detection method using multiple GPS receiving channels and three-types machine learning techniques. Proposed multiple GPS channels consist of commercial GPS receiver with no anti-jamming function, receiver with just anti-noise jamming function and receiver with anti-noise and anti-spoofing jamming function. This system enables user to identify the characteristics of the jamming signals by comparing the coordinates received at each receiver. In this paper, The five types of jamming signals with different signal characteristics were entered to the system and three kinds of machine learning methods(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree) were applied to perform jamming detection test. The results showed that the DT technique has the best performance with a detection rate of 96.9% when the single machine learning technique was applied. And it is confirmed that DT technique is more effective for GPS jamming detection than the binary classifier techniques because it has low ambiguity and simple hardware. It was also confirmed that SVM could be used only if additional solutions to ambiguity problem are applied.

Welfare Interface using Multiple Facial Features Tracking (다중 얼굴 특징 추적을 이용한 복지형 인터페이스)

  • Ju, Jin-Sun;Shin, Yun-Hee;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.75-83
    • /
    • 2008
  • We propose a welfare interface using multiple fecial features tracking, which can efficiently implement various mouse operations. The proposed system consist of five modules: face detection, eye detection, mouth detection, facial feature tracking, and mouse control. The facial region is first obtained using skin-color model and connected-component analysis(CCs). Thereafter the eye regions are localized using neutral network(NN)-based texture classifier that discriminates the facial region into eye class and non-eye class, and then mouth region is localized using edge detector. Once eye and mouth regions are localized they are continuously and correctly tracking by mean-shift algorithm and template matching, respectively. Based on the tracking results, mouse operations such as movement or click are implemented. To assess the validity of the proposed system, it was applied to the interface system for web browser and was tested on a group of 25 users. The results show that our system have the accuracy of 99% and process more than 21 frame/sec on PC for the $320{\times}240$ size input image, as such it can supply a user-friendly and convenient access to a computer in real-time operation.