• 제목/요약/키워드: kNN분류기

검색결과 90건 처리시간 0.032초

나이브 베이지안 분류기를 이용한 게시물 자동 분류를 위한 eCRM 에이전트 시스템 (eCRM Agent System for Articles Automatic Classification System based on Naive Bayesian Classifier)

  • 최정민;이병수
    • 전기전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.216-223
    • /
    • 2004
  • 최근 전자 상거래에서 사용하고 있는 게시판은 고객의 능동적인 참여로 운영되며, 게시물은 고객의 직접적인 의사를 들을 수 있는 인 바운드(Inbound)정보로서 다른 eCRM을 위한 고객 접점 채널 과는 성격이 다른 도구이다. 또한 게시판의 효과적인 운영은 게시판 자체의 신뢰도를 향상 시키고 나아가 전자 상거래 전체의 신뢰도를 높여 줄 수 있는 중요한 eCRM 도구이다. 그러나 현재 대부분의 전자상거래에서 운영하는 게시판은 기 분류된 카테고리를 고객이 직접 수동으로 선정하도록 되어 있고, 이렇게 임의로 분류되는 게시물에 대하여 체계적인 처리 과정 없이 답변이 이루어지기 때문에 답변을 하는데 많은 시간이 소요 되고 있으며, 정확한 답변이 이루어지지 않고 있는 실정이다. 따라서, 본 논문에서는 여러 가지 종류의 게시물에 대하여 나이브 베이지안 분류기를 이용하여 게시판의 기존 문제점의 해결과 효과적인 운영 그리고 게시물의 체계적인 분류 관리를 할 수 있는 게시물 자동 분류기를 설계하고 구현하였다. 아울러 문서 분류 학습 기법 중 대표적인 TFIDF. k-NN, 나이브 베이지안 기법들의 게시물 분류 성능을 측정하여 채택한 나이브 베이지안 분류기의 우수성을 확인 하였다.

  • PDF

위키피디아를 이용한 분류자질 선정에 관한 연구 (An Experimental Study on Feature Selection Using Wikipedia for Text Categorization)

  • 김용환;정영미
    • 정보관리학회지
    • /
    • 제29권2호
    • /
    • pp.155-171
    • /
    • 2012
  • 텍스트 범주화에 있어서 일반적인 문제는 문헌을 표현하는 핵심적인 용어라도 학습문헌 집합에 나타나지 않으면 이 용어는 분류자질로 선정되지 않는다는 것과 형태가 다른 동의어들은 서로 다른 자질로 사용된다는 점이다. 이 연구에서는 위키피디아를 활용하여 문헌에 나타나는 동의어들을 하나의 분류자질로 변환하고, 학습문헌 집합에 출현하지 않은 입력문헌의 용어를 가장 유사한 학습문헌의 용어로 대체함으로써 범주화 성능을 향상시키고자 하였다. 분류자질 선정 실험에서는 (1) 비학습용어 추출 시 범주 정보의 사용여부, (2) 용어의 유사도 측정 방법(위키피디아 문서의 제목과 본문, 카테고리 정보, 링크 정보), (3) 유사도 척도(단순 공기빈도, 정규화된 공기빈도) 등 세 가지 조건을 결합하여 실험을 수행하였다. 비학습용어를 유사도 임계치 이상의 최고 유사도를 갖는 학습용어로 대체하여 kNN 분류기로 분류할 경우 모든 조건 결합에서 범주화 성능이 0.35%~1.85% 향상되었다. 실험 결과 범주화 성능이 크게 향상되지는 못하였지만 위키피디아를 활용하여 분류자질을 선정하는 방법이 효과적인 것으로 확인되었다.

저속 구름 베어링의 다중 결함 조기 검출 (Early Multiple Fault Identification of Low-Speed Rolling Element Bearings)

  • 강현준;정인규;강명수;김종면
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.749-752
    • /
    • 2014
  • 본 논문에서는 저속으로 동작하는 구름 베어링의 다중 결함 조기 검출을 위해 결함 특징 추출, 효과적인 특징 선택, 선택된 특징을 이용한 결함 분류의 세 단계로 구성된 결함 진단 기법을 제안한다. 1단계에서 이산 웨이블릿 변환을 이용하여 미세성분으로부터 통계적 결함 특징을 추출하고, DET(distance evaluation technique)를 이용하여 추출한 결함 특징 가운데 베어링 다중 결함 검출에 효과적인 특징을 선택한다. 마지막으로 선택된 특징을 k-NN(k-Nearest Neighbors) 분류기 입력으로 사용함으로써 결함을 진단한다. 본 논문에서는 제안한 결함 진단 기법의 성능을 분류 정확도 측면에서 평가한 결과 95.14%의 높은 분류 정확도를 보였다.

멀웨어 검출을 위한 기계학습 알고리즘과 특징 추출에 대한 성능연구 (A Study on Performance of ML Algorithms and Feature Extraction to detect Malware)

  • 안태현;박재균;권영만
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.211-216
    • /
    • 2018
  • 이 논문에서는 알려지지 않은 PE 파일이 멀웨어의 여부를 분류하는 방법을 연구하였다. 멀웨어 탐지 영역의 분류 문제에서는 특징 추출과 분류가 중요하다. 위와 같은 목적으로 멀웨어 탐지를 위해 우리는 어떠한 특징들이 분류기에 적합한지, 어떠한 분류기가 선택된 특징들에 대해 연구하였다. 그래서 우리는 멀웨어 탐지를 위한 기능과 분류기의 좋은 조합을 찾기 위해 실험하였다. 이를 위해 두 단계로 실험을 실시하였다. 1 단계에서는 Opcode, Windows API, Opcode + Windows API의 특징들을 이용하여 정확도를 비교하였다. 여기에서 Opcode + Windows API 특징이 다른 특징보다 더 좋은 결과를 나타내었다. 2 단계에서는 나이브 베이즈, K-NN, SVM, DT의 분류기들의 AUC 값을 비교하였다. 그 결과 DT의 분류기가 더 좋은 결과 값을 나타내었다.

계층구조의 분류기에 의한 유도전동기 고장진단 (Fault Diagnosis of Induction Motor by Hierarchical Classifier)

  • 이대종;송창규;이재경;전명근
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.513-518
    • /
    • 2007
  • In this paper, we propose a fault diagnosis scheme tor induction motor by adopting a hierarchical classifier consisting of k-Nearest Neighbors(k-NN) and Support Vector Machine(SVM). First, some motor conditions are classified by a simple k-NN classifier in advance. And then, more complicated classes are distinguished by SVM. To obtain the normal and fault data, we established an experimental unit with induction motor system and data acquisition module. Feature extraction is performed by Principal Component Analysis(PCA). To show its effectiveness, the proposed fault diagnostic system has been intensively tested with various data acquired under the different electrical and mechanical faults with varying load.

텍스트 문서 분류를 위한 베이지안망 학습 (Learning Bayesian Networks for Text Documents Classification)

  • 황규백;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.262-264
    • /
    • 2000
  • 텍스트 문서 분류는 텍스트 형태로 주어진 문서를 종류별로 구분하는 작업으로 웹페이지 검색, 뉴스 그룹 검색, 메일 필터링 등이 분야에 응용될 수 있는 기반 작업이다. 지금까지 문서를 분류하는데는 k-NN, 신경망 등 여러 가지 기계학습 기법이 이용되어 왔다. 이 논문에서는 베이지안망을 이용해서 텍스트 문서 분류를 행한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 DAG 형태인 망 구조와 각 노드에 연관된 지역확률분포로 구성된다. 그래프 모델을 사용할 경우 학습에 이용되는 각 속성들간의 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 실험 데이터로는 Reuters-21578 문서분류데이터를 이용했으며 베이안망의 성능은 나이브 베이즈 분류기와 비슷했다.

  • PDF

자기 조직화 맵 기반 유사화상 검색의 고속화 수법 (A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps)

  • 오군석;양성기;배상현;김판구
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.515-522
    • /
    • 2001
  • 특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.

  • PDF

목차, 책 소개를 이용한 단행본 문서 범주화에 관한 기초연구 (A preliminary Study on Text Categorization of Book using Table of Contents and Book Description)

  • 도현호;이용구
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2014년도 제21회 학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2014
  • 이 연구에서는 도서관의 주요 장서에 해당하는 단행본 도서에 대한 자동 분류를 적용가능한지 알아보고자 하였다. 분류자질로 메타데이터인 서명, 목차, 책 소개를 사용하였으며, 다양한 자질 가중치를 적용하여 581건의 단행본 도서를 통해 kNN 분류기의 분류성능을 파악하였다. 실험 결과 이들 메타데이터를 모두 사용하였을 때 가장 좋은 분류성능을 가져왔으며, 실험문헌집단의 규모가 작은 한계가 있지만 로그 TF를 취한 가중치 방법이 좋은 성능을 가져왔다.

  • PDF

성별 구분을 통한 음성 감성인식 성능 향상에 대한 연구 (A Study on The Improvement of Emotion Recognition by Gender Discrimination)

  • 조윤호;박규식
    • 대한전자공학회논문지SP
    • /
    • 제45권4호
    • /
    • pp.107-114
    • /
    • 2008
  • 본 논문은 남/여 성별에 기반해 음성을 평상, 기쁨, 슬픔, 화남의 4가지 감성 상태로 분류하는 감성인식 시스템을 구축하였다. 제안된 시스템은 입력 음성으로부터 1차적으로 남/여 성별을 분류하고, 분류된 성별을 기반으로 남/여 각기 최적의 특징벡터 열을 적용하여 감성인식을 수행함으로써 감성인식 성공률을 향상시켰다. 또한 음성인식에서 주로 사용되는 ZCPA(Zero Crossings with Peak Amplitudes)를 감성인식용 특징벡터로 사용하여 성능을 향상시켰으며, 남/여 각각의 특징 벡터 열을 최적화하기 위해 SFS(Sequential Forward Selection) 기법을 사용하였다. 감성 패턴 분류기로는 k-NN과 SVM을 비교하여 실험하였다. 실험결과 제안 시스템은 4가지 감성상태에 대해 약 85.3%의 높은 감성 인식 성공률을 달성할 수 있어 향후 감성을 인식하는 콜센터, 휴머노이드형 로봇이나 유비쿼터스(Ubiquitous) 환경 등 다양한 분야에서 감성인식 정보를 유용하게 사용될 수 있을 것으로 기대된다.

XAI 를 활용한 기업 부도예측 분류모델 연구 (A Study on Classification Models for Predicting Bankruptcy using XAI)

  • 김지홍;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.571-573
    • /
    • 2022
  • 최근 금융기관에서는 축적된 금융 빅데이터를 활용하여 차별화된 서비스를 강화하고 있다. 기업고객에 투자하기 위해서는 보다 정밀한 기업분석이 필요하다. 본 연구는 대만기업 6,819개의 95개 재무데이터를 가지고, 비대칭 데이터 문제해결, 데이터 표준화 등 데이터 전처리 작업을 하였다. 해당 데이터는 로지스틱 회기, SVM, K-NN, 나이브 베이즈, 의사결정나무, 랜덤포레스트 등 9가지 분류모델에 5겹 교차검증을 적용하여 학습한 후 모델 성능을 비교하였다. 이 중에서 성능이 가장 우수한 분류모델을 선택하여 예측 결정 이유를 판단하고자 설명 가능한 인공지능(XAI)을 적용하여 예측 결과에 대한 설명을 부여하여 이를 분석하였다. 본 연구를 통해 데이터 전처리에서부터 모델 예측 결과 설명에 이르는 분류예측모델의 전주기를 자동화하는 시스템을 제시하고자 한다.