• 제목/요약/키워드: kANN

검색결과 1,352건 처리시간 0.029초

인공신경망을 이용한 지하수위 예측과 계절효과 반영을 위한 입력치의 영향 (The Effect of Seasonal Input on Predicting Groundwater Level Using Artificial Neural Network)

  • 김인철;이준환
    • Ecology and Resilient Infrastructure
    • /
    • 제5권3호
    • /
    • pp.125-133
    • /
    • 2018
  • 인공신경망 (Artificial neural network, ANN)은 간편히 시계열 데이터를 예측할 수 있는 모델 중에 하나로 지하수위를 예측하는데 빈번히 사용되었으며, 많은 연구자들이 ANN으로 지하수위 예측에 있어서 높은 예측 신뢰성을 얻기 위하여 노력해 왔다. 본 연구에서는 ANN를 이용한 지하수위 예측 시 계절 효과를 반영하기 위한 input으로 사용되는 Dummy가 지하수위 예측 결과에 미치는 영향에 대하여 분석하였다. 정성적 및 정량적인 분석을 위하여 도해법과 상관계수, 에러 지수를 이용하였다. 분석결과 하천변 도심지역에서는 ANN의 input으로 사용된 Dummy가 오히려 예측 신뢰성을 떨어뜨리는 결과를 보였다.

Multicity Seasonal Air Quality Index Forecasting using Soft Computing Techniques

  • Tikhe, Shruti S.;Khare, K.C.;Londhe, S.N.
    • Advances in environmental research
    • /
    • 제4권2호
    • /
    • pp.83-104
    • /
    • 2015
  • Air Quality Index (AQI) is a pointer to broadcast short term air quality. This paper presents one day ahead AQI forecasting on seasonal basis for three major cities in Maharashtra State, India by using Artificial Neural Networks (ANN) and Genetic Programming (GP). The meteorological observations & previous AQI from 2005-2008 are used to predict next day's AQI. It was observed that GP captures the phenomenon better than ANN and could also follow the peak values better than ANN. The overall performance of GP seems better as compared to ANN. Stochastic nature of the input parameters and the possibility of auto-correlation might have introduced time lag and subsequent errors in predictions. Spectral Analysis (SA) was used for characterization of the error introduced. Correlational dependency (serial dependency) was calculated for all 24 models prepared on seasonal basis. Particular lags (k) in all the models were removed by differencing the series, that is converting each i'th element of the series into its difference from the (i-k)"th element. New time series is generated for all seasonal models in synchronization with the original time line & evaluated using ANN and GP. The statistical analysis and comparison of GP and ANN models has been done. We have proposed a promising approach of use of GP coupled with SA for real time prediction of seasonal multicity AQI.

인공신경망을 이용한 선박의 자동접안 제어에 관한 연구 (A Study of the Automatic Berthing System of a Ship Using Artificial Neural Network)

  • 배철한;이승건;이상의;김주한
    • 한국항해항만학회지
    • /
    • 제32권8호
    • /
    • pp.589-596
    • /
    • 2008
  • 선박의 접안운동을 자동화하기 위하여 인공신경망(Artificial Neural Network, 이하 ANN)에 의한 제어를 수행하였다. ANN은 시스템의 비선형성이 표현 가능하므로 접안운동과 같은 비선형성이 강한 조종운동에 적합하다. 입력층과 출력층 사이에 하나 이상의 중간층이 존재하는 다층 인식자(Multi-layer perceptron)를 사용하였고, 교사 데이터(Teaching data)와 역전파(Back-Propagation) 알고리즘을 사용하여 신경망의 출력값과 목표 출력값 사이의 오차가 최소가 되도록 신경망 학습을 수행하였다. 접안 시 저속조종 수학모델을 사용하여 접안 시뮬레이션을 수행하였으며, ANN의 입력층 성분(unit)이 8개인 구조와 6개인 구조의 접안 제어를 비교하였다. 시뮬레이션 결과, 두 ANN에 의하여 접안 경로 선택에 차이가 나타났으나 접안 조건은 모두 만족하였다.

Classification and Prediction Of A Health Status Of HIV/AIDS Patients: Artificial Neural Network Model

  • Lee, Chang W.;N.K. Kwak
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.473-477
    • /
    • 2001
  • Artificial neural network (ANN) is known to identify relationships even when some of the input data are very complex, ill-defined and ill-structured. One of the advantages in ANN is that it can discriminate the linearly inseparable data. This study presents an application of ANN to classify and predict the symptomatic status of HIV/AIDS patients. Even though ANN techniques have been applied to a variety of areas, this study has a substantial contribution to the HIV/AIDS care and prevention planning area. ANN model in classifying both the HIV and AIDS status of HIV/AIDS patients is developed and analyzed. The diagnostic accuracy of the ANN in classifying both the HIV status and AIDS status of HIV/AIDS status is evaluated. Several different ANN topologies are applied to AIDS Cost and Services Utilization Survey (ACSUS) datasets in order to demonstrate the model\`s capability. If ANN design models are different, it would be interesting to see what influence would have on classification of HIV/AIDS-related persons.

  • PDF

인공신경망 기법을 이용한 청미천 유역 Flux tower 결측치 보정 (A point-scale gap filling of the flux-tower data using the artificial neural network)

  • 전현호;백종진;이슬찬;최민하
    • 한국수자원학회논문집
    • /
    • 제53권11호
    • /
    • pp.929-938
    • /
    • 2020
  • 본 연구에서는 청미천 유역에서의 플럭스타워에서 산출되는 증발산량의 결측값을 보완하기 위해 인공신경망(Artificial Neural Network, ANN)을 사용하였다. 비교 평가를 위해, Mean Diurnal Variation(MDV), Food and Agriculture Organization Penman-Monteith(FAO-PM) 방법들을 이용하여 증발산량을 산정하였고, ANN 방법을 이용한 결과와 비교하였다. 비교 평가 방법으로 시계열 방법 및 통계 분석(결정계수, IOA, RMSE, MAE)이 사용되었다. 각 gap-filling 모델의 검증을 위해 2015년의 30분 단위 데이터를 이용하였으며, 121개의 결측값 중 MDV, FAO-PM, ANN 방법 순으로 각각 70, 53, 54개의 결측값을 보완하여 모든 데이터가 관측되지 않은 36개의 데이터를 제외하면 각각 82.4%, 62.4%, 63.5%의 성능을 보였다. 결정계수(MDV, FAO-PM, ANN 방법 순으로 각각 0.673, 0.784, 0.841)와 IOA(MDV, FAO-PM, ANN 방법 순으로 각각 0.899, 0.890, 0.951)를 분석한 결과, 3가지 방법 모두 양질의 상관성을 보여 활용성이 충분하다고 판단되며, 이 중 ANN 모델이 가장 높은 적합도와 양질의 성능을 나타내었다. 본 연구를 기반으로 기계학습방법을 이용한 플럭스 타워 자료의 gap-filing 연구에 보다 적절하게 활용될 수 있을 것이다.

Filtering Random Noise from Deterministic Underwater Signals via Application on an Artificial neural Network

  • Na, Young-Nam;Park, Joung-Soo;Choi, Jae-Young;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권3E호
    • /
    • pp.4-12
    • /
    • 1996
  • In this study, we examine the applicability of an artificial neural network(ANN) for filtering underwater random noise and for identifying underlying signals taken from noisy environment. The approach is to find a way of compressing the input data and then decompressing it using an ANN as in image compressing process. It is well known that random signal is hard to compress while ordered information is not. The use of a limited number of processing elements(PEs) in the hidden layer of an Ann ensures that some of the noise would be removed in the reconstruction process. Two types of the signals, synthesized and measured, are used to examine the effectiveness of the ANN-based filter. After training process is completed, the ANN successfully extracts the underlying signals form the synthesized or measured noisy signals. In particular, compared with the results form without filtering or moving averaged, the ANN-based filter gives much better spectrograms to identify underlying signals from the measured noisy data. This filtering process is achieved without using and kind of highly accurate signal processing technique. More experimentation needs to be followed to develop the ANN-based filtering technique to the level of complete understanding.

  • PDF

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • 제20권3호
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

WLAN 환경에서 효율적인 실내측위 결정을 위한 혼합 SVM/ANN 알고리즘 (Hybrid SVM/ANN Algorithm for Efficient Indoor Positioning Determination in WLAN Environment)

  • 권용만;이장재
    • 통합자연과학논문집
    • /
    • 제4권3호
    • /
    • pp.238-242
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. The system that uses the artificial neural network(ANN) falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the SVM/ANN hybrid algorithm is proposed in this paper. The proposed algorithm is the method that ANN learns selectively after clustering the SNR data by SVM, then more improved performance estimation can be obtained than using ANN only and The proposed algorithm can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure. Experimental results indicate that the proposed SVM/ANN hybrid algorithm generally outperforms ANN algorithm.

Prediction of creep in concrete using genetic programming hybridized with ANN

  • Hodhod, Osama A.;Said, Tamer E.;Ataya, Abdulaziz M.
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.513-523
    • /
    • 2018
  • Time dependent strain due to creep is a significant factor in structural design. Multi-gene genetic programming (MGGP) and artificial neural network (ANN) are used to develop two models for prediction of creep compliance in concrete. The first model was developed by MGGP technique and the second model by hybridized MGGP-ANN. In the MGGP-ANN, the ANN is working in parallel with MGGP to predict errors in MGGP model. A total of 187 experimental data sets that contain 4242 data points are filtered from the NU-ITI database. These data are used in developing the MGGP and MGGP-ANN models. These models contain six input variables which are: average compressive strength at 28 days, relative humidity, volume to surface ratio, cement type, age at start of loading and age at the creep measurement. Practical equation based on MGGP was developed. A parametric study carried out with a group of hypothetical data generated among the range of data used to check the generalization ability of MGGP and MGGP-ANN models. To confirm validity of MGGP and MGGP-ANN models; two creep prediction code models (ACI209 and CEB), two empirical models (B3 and GL 2000) are used to compare their results with NU-ITI database.