• 제목/요약/키워드: k-spatial medians clustering

검색결과 4건 처리시간 0.019초

Sample Based Algorithm for k-Spatial Medians Clustering

  • Jin, Seo-Hoon;Jung, Byoung-Cheol
    • 응용통계연구
    • /
    • 제23권2호
    • /
    • pp.367-374
    • /
    • 2010
  • As an alternative to the k-means clustering the k-spatial medians clustering has many good points because of advantages of spatial median. However, it has not been used a lot since it needs heavy computation. If the number of objects and the number of variables are large the computation time problem is getting serious. In this study we propose fast algorithm for the k-spatial medians clustering. Practical applicability of the algorithm is shown with some numerical studies.

On a Modified k-spatial Medians Clustering

  • Jhun, Myoungshic;Jin, Seohoon
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.247-260
    • /
    • 2000
  • This paper is concerned with a modification of the k-spatial medians clustering. To find a suitable number of clusters, the number k of clusters is incorporated into the k-spatial medians clustering criterion through a weight function. Proposed method for the choice of the weight function offers a reasonable number of clusters. Some theoretical properties of the method are investigated along with some examples.

  • PDF

Bootstrap Method for k-Spatial Medians

  • Jhun, Myoung-Shic
    • Journal of the Korean Statistical Society
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 1986
  • The k-medians clustering method is considered to partition observations into k clusters. Consistency and advantage of bootstrap confidence sets of k optimal cluster centers are discussed. The k-medians and k-means clustering methods are compared by using actual data sets.

  • PDF

κ-공간중위 군집방법을 활용한 층화방법 (Stratification Method Using κ-Spatial Medians Clustering)

  • 손순철;전명식
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.677-686
    • /
    • 2009
  • 표본조사에서 널리 쓰이는 모집단의 층화는 추정의 효율을 높이는 방법 중의 하나지만, 이상점을 포함하는 변수가 있는 경우에 여러 가지 문제점을 유발시킬 수 있다. 특히, 이상점이 존재하는 다변량 자료의 경우, 층화를 위한 $\kappa$-평균 군집방법은 이상점에 매우 민감하여 추정의 효율을 떨어뜨릴 수 있다. 본 연구에서는 이상점이 존재하는 다변량 자료의 층화를 위해 $\kappa$-평균 군집방법보다 강건하며 이상점을 따로 식별하는 과정이 배제된 $\kappa$-공간중위수 군집방법을 제안한다. 기존 관련연구인 박진우와 윤석훈 (2008)과 동일한 자료에 대한 사례분석을 통해 층화과정들을 비교, 검토하였으며 이들의 효율성을 추정량의 분산을 통해 비교하였다.