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On a Modified k-Spatial Medians Clustering |

Myoungshic Jhun' and Sechcon Jint

ABSTRACT

This paper is concerned with a modification of the k-spatial medians
clustering. To find a suitable number of clusters, the number k of clusters is
incorporated into the k-spatial medians clustering criterion through a weight
function. Proposed method for the choice of the weight function offers a
reasonable number of clusters. Some theoretical properties of the method
are investigated along with some examples.
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1. INTRODUCTION

Suppose that independent multi-dimensional observations z;,z,,- - ,z, are
sampled from a distribution  on RP (p > 1). Let F,, be an empirical distribution
function of the observations. It is desired to partition these observations into k
clusters so that the observations within the same cluster are close in some sense

and observations in different clusters are distant. We may use a procedure consists
of

(1) finding a, = (@y1,8n2, " »Gpx) Minimizing

—Zlgugkn llz; — a;l)

where || - || is the usual Euclidean norm and 7(-) is an increasing function,
and

(ii) assigning each z; to its nearest cluster center.
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Some possible distance functions 7(-) can be considered. If the distance func-
tion is n(z) = z2, the procedure is the k-means clustering which minimizes within
cluster sum of squares, and each g, ; is the mean of the observations in its cluster.
Properties of the k-means clustering were studied by many authors including Har-
tigan (1975, 1978) and Pollard (1981, 1982). Even though the k-means clustering
is one of the most widely used procedure, it is very much influenced by outliers,
distant observations and data structure. If n(z) = |z|, the procedure minimizes
within cluster sum of absolute deviations and each g,,; is the spatial median of the
observations in its cluster. Statistical uses of the spatial median were discussed
by Brown (1983). Since the spatial median is robust against outliers, we expect
that the adoption of the spatial median into cluster analysis makes reasonable
partition comparing with the k-means clustering. As an alternative partitioning
method for decreasing effect of outliers and data structure, the k-spatial medians
clustering was considered in some studies including Spath (1980), Butler (1986)
and Jhun (1986).

For the procedures above, the number k of clusters should be given in advance.
However, in most real life clustering situations, a data analyst is faced with
the problem of choosing an appropriate number of clusters in the final solution.
Accordingly, numerous procedures for determination of the number of clusters
have been suggested and many studies have been carried out to compare the
procedures. For example, Milligan and Cooper (1985) conducted a Monte Carlo
evaluation of many indices for determining the number of clusters. On the while,
Rost (1995) studied feasibility of the k-means clustering procedure together with
a weight function, which can be used to obtain a proper number of clusters for a
given data set.

In this paper, in the same vein of Rost (1995), a modified k-spatial medians
clustering procedure is proposed. By using a weight function for the proposed
procedure, reduction of within cluster sum of absolute deviations resulting from
dividing the data set into k clusters will be compromised with losses of information
from summarizing each observation as representative characteristics of its cluster.
As a result, the number k of clusters depends on a given data set via the sample
size and data structure. However, it is crucial to have a proper weight function for
a satisfactory clustering results. We propose a method for the choice of the weight
function and demonstrate its applicability. Asymptotic properties of the modified
k-spatial medians clustering are also investigated along with some examples.
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2. A MODIFIED k-SPATIAL MEDIANS CLUSTERING

Like other partitioning methods, determination of the number of clusters is
a crucial problem for the k-spatial medians clustering. One of the natural way
of finding a suitable number k£ of clusters is to incorporate it into a specified
clustering criterion. Then, in the process of the algorithm, the modified criterion
is minimized not only with respect to the unknown clusters but also with respect
to the unknown cluster number k. This type of approach has been formally
investigated by Peck et al. (1989) and Rost (1995). They modified the k-means
clustering criterion by introducing a certain penalty factor which increases with
k.

Now, we propose a modified k-spatial medians clustering procedure as fol-
lows by incorporating a weight function w(k) into the objective function. The
procedure consists of

(i) finding the number of clusters k, and sample k,-spatial medians

8, = (@p1,8n2, g, ) Satisfying (2.1),

W(Qn?kn7Fn) = w(kn) min ”Q'—an”an

1<j<kn

= i i k, F, 2.1
]{;Iél£ lw(k) (g_:?%ik) W(Qv ) 'n) ( )

where W(a, k, Fy,) = f11<m£1k||$_ — a;||dF,, the weight function w(k) is a
j

aj
monotone increasing function of k and K is the largest possible number of
clusters, and

(ii) assigning each z, to its nearest cluster center.

In the proposed procedure, by multiplying the weight function w(k,) to the
objective function of the k-spatial medians clustering, one can compromise re-
duction of within cluster sum of absolute deviations resulting from dividing the
data set into k& groups with losses of information from summarizing each observa-
tion as representative characteristics of its cluster. Notice that the number k, of
clusters is a random number depending on the sample size n and data structure.
Therefore the length of the sample optimal center vector g, is not fixed, and
the modified k-spatial medians clustering offers a data dependent choice of the
number of clusters.
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Now, let us define optimal number k* of clusters and optimal k*-spatial me-

dians ¢* = (@}, a3, - ,0}.) as

W(a*, k", F) = w(k*) [ min ||z — aj||dF

1< <k
= min {w(k) min min ||z — g;||dF (2.2)
k<K (@1, .ap) 1<5<k

Consistency of the proposed procedure can be shown in the following Theorem
2.1.

Theorem 2.1. Let a, = (8,1, ,8nk,) be the vector of optimal centers from
the modified k-spatial medians clustering for independent sampling from a dis-
tribution F on RP. Suppose that [ ||z||dF < oo and that there ezist a unique

k* € N and a unique vector a* = (aj, a3, - ,a}.). Then
(i) kn — k* almost surely as n — oo
(i) (@n1>- " »@nk,) — (al,- - ,a;.) almost surely as n — oo
Proof: See Appendix. d

Now, let us examine Example 2.1, which is similar to Exmaple 2.1 of Gaenssler
(1988), to grasp applicability of the modified k-spatial medians clustering.
Example 2.1 Consider a underlying distribution F € {F() F@) ... FK)},
where F(1) : uniform [0,1], F@: uniform [0,1] U [2,3], F®): uniform [0,1] U [2,3]

* . . 1
U45], . If F=F1 then W(a* k,F) = mgln/lrsnjlgkllz—gj||dlJ = o
Hence W (a*, k, F') decreases at the rate of 1/k with the number % of clusters. In
general, for i € N, W(a* = (aj, a3, -- ,a;*xj),z' x j, F)) = 4%-, 7 € N is satisfied.
Thus there exists a certain weight function w(k), for example w(k) = k%/2, such
that the optimal number k* of clusters and cluster centroids a* are uniquely
determined for any F € {F(U, F® ... ,F(E)}. One can easily check that the
optimal number £* of clusters and cluster centroids (a},a3, - - , a}.) which satisfy
(2.2) are computed for each 7, (¢ = 1,2,3) as follows by considering the weight
function w(k) = k%/2,

FO . k=14 =1/2
F® . k* =2 (a*,a}) = (1/2,5/2)
F® . k" =3,(a},a5,03) = (1/2,5/2,9/2)
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The modified k-spatial medians clustering releases us from the problem of deter-
mining the number of clusters. O

The following Theorem 2.2 gives the limiting distribution of the sample k-
spatial medians for the proposed procedure.

Theorem 2.2. Let ky, be the optimal number of clusters and a,, = (@n1,- "+ ;@ny,)
be the vector of optimal centers from the modified k-spatial medians clustering for
independent sampling from a distribution F' on RP. Suppose
(i) the vector a* that minimizes [ ¢g x(-)dF is unique, where ¢q k() = lr<rl§£1k IE
- <<
“_j”’
(i) the map a = [ ¢pok(-)dF has positive definite second order derivative T' at
a=a’, '

(iii) [ |lzl[2dF < oo.

Let 5, = (@,,0") and g = (a*,0'), which are pK x 1 vectors where K is
the mazimum number of clusters being considered. Then /n(8 — B*) converges
weakly to N(0,T) where

r-tvr-t ¢
T = € RPExpK

and V = [n(-,a*)n(-,a*)'dF where n(z,a) =

IS| 18
=3[

Proof: See Appendix. O

Cheoice of the weight function

The modified k-spatial medians clustering uses a weight function w(k) to
deal with the decreasing sum of within-cluster absolute deviations caused by
increasing the number of clusters. The number & of clusters in the modified k-
spatial medians clustering largely depends on the type of weight function w(k).
If the weight function increases too fast(or slow) as k increases, the number
of clusters tends to be selected as a small(or large) one. So it is important
to find a proper weight function for successful performance of the modified k-
spatial medians clustering. Marriott (1971) used the weight function of the form
w(k) = k2 in order to obtain the k, for the k-means clustering. Krzanowski
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and Lai (1988) also gave a refinement of the method, and Rost (1995) applied
the result for some cases. However, the method was motivated from uniform
underlying distribution setting. We extend the method to general underlying
distribution by proposing a weight function of the form w.(k) = k° for the k-
spatial medians clustering, where ¢ is a parameter for the amount of adjustment
of the clustering criterion. Naturally the value of ¢ should be positive and it
decides an extent of penalizing the subdivision of k clusters.

Now, we propose a data dependent choice of the parameter ¢ as the following
manner. Consider £; which satisfies

WM, 1,F) = k*W(@®, k F) (2.3)
for k = 1,---, K, where ¢**) minimizes flr<r1j£1kl|§ — aj||[dF. Large ey implies
J

small within cluster sum of absolute deviations and small ¢4, implies large within
cluster sum of absolute deviations for the clustering results when the number of
clusters is k. By considering this trade-off, we may define a correct value €* as
the average of ¢x for a distribution F' as following.

K

€k
=) . (2.4)
k=2

For a given data set, we also can define sample version &,

K
Enk
En = (2.5)

k=2K—1

where g, satisfies W(ggll), 1,F,) = kE"kW(gglk),k,Fn) fork=1,--- ,K.

Consequently, we propose a data dependent choice of ¢ = &, and weight
function for the k-spatial medians clustering would be w, (k) = k°». Consistency
of the choice e, can be obtained as in Theorem 2.3.

Theorem 2.3. Suppose that [ ||z||dF < oo and that there is a unique vector a*
for which minimizes [ 1r<n‘i21k ||-—a;||dF for each j =1,2,...,k. Then e, converges
<5<

to €* almost surely.

Proof: See Appendix. a
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3. EXAMPLES

Following two examples show the applicability of the modified k-spatial medi-
ans clustering. The first example is analytic application of the modified k-spatial
medians clustering for a underlying distribution and the second one is practical
application of the procedure for a generated data set.

Example 3.1 Suppose that the underlying distribution F' forms

F : Uniform(0, 1) U Uniform(2, 3)

One can easily find that

1, k=
W(_O_,*,k,F)z ilEa k=274a6a"'
k —
2(k2-1) k“3a5a7a"'
Hence we have
K K/2-1 . 2
log 2 log((25 +1)* —1) .
1 1 K
) K—1(§ Tog i + 2 log(2] + 1) +1), is even
e = - ~
K (K—l)/2 . 2
log 2 log((2 1) -1
— logi = log(25 + 1)

The * and W(a*, k, F) are given in Table 3.1. Those are computed for each K
from 3 to 20. For every K, the minimum of W(a*, k, F) is achieved at k = 2. O
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Example 3.2 Each of 40 data points are coming from three multivariate normal

distributions N(Ei,Z), i = 1,2,3 with By = <g>’ﬁ2 = <g>,y_3 = ( g)

. 10 .
and covariance structure ¥ = 01 ) Figure 3.1 represents the generated

data set. Each point is plotted by its distribution identification number.

Figure 3.1 Scatterplot of the generated data

Table 3.2 shows the result of the modified k-spatial medians clustering for the
K

B . o Eni
generated data set. The € of the weight function is computed as e, = I74 ™ 1 =
=2

0.703 where en;’s satisfy W (o), 1, F,) = 262 W (a{?, 2, F) = 3= W (a!¥, 3, F,) =
e = 95"9W(_q$19),9, F,). In the example, we consider K = 9 as the maximum
number of clusters. As shown in Example 3.1, we can choose a larger number
than the optimal number of clusters as the maximum number of clusters. The
minimum value of W (a,,, k, F},) is achieved at k = 3, W(g&s), 3, F,) = 335.317. Of
course the resulting clusters of the modified k-spatial medians clustering accord
with Figure 3.1. d
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Table 3.2 The result of the modified k-spatial medians clustering
for Example 3.2

W@,k Fy) | enn | W(ay, k, Fp)
422.289 422.289
313.960 0.428 511.133
154.876 0.915 335.317
144.591 0.773 383.230
130.959 0.727 406.063
120.950 0.698 426.322
107.395 0.704 421.877
99.074 0.697 427.502
93.743 0.085 439.422

& O ~J O UY Wi N &=

4. CONCLUSIONS

It is not uncommon to have outliers and particular structures in real life clus-
tering situations. Since the spatial median is robust against outliers, we expect to
obtain a reasonable partitioning result by using the k-spatial medians clustering.
However, the number k of clusters should be given in advance for the k-spatial
medians clustering as in other partitioning methods. We propose a modified &-
spatial medians clustering procedure which determines the number of clusters
data-dependently. This method incorporates the number & of clusters into the
k-spatial medians clustering criterion through the weight function. It makes an
application of the k-spatial medians clustering possible without pre-determined
number of clusters. Anyhow, it is important to choose a proper weight function
for reasonable resulting clusters. We also propose a method for the choice of a
proper weight function in general setting. Applicability of the modified k-spatial
medians clustering is shown by giving some examples with properly determined
weight function. Moreover, we show consistency of the proposed number k,, of
clusters and that of sample k,-spatial medians. Asymptotic normality of sample
kn-spatial medians is also obtained.
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APPENDIX

Proof of Theorem 2.1 Put ¢, x(z) = w(k)¢ax(z), £ € RP, where ¢ox(-) =
min || - —g;||. Let T = {@g4; (a1, - ,a;) € Ck,k < (Nk* = K)}, where

1<5<k

(a1, ,a;) € Ck if and only if a; € B(M) for at least one 7 out of 1 < i < k,
where the closed ball B(M) centered at origin and of radius M which is large
enough to satisfy (a1, - ,ank,) € Ck, for sufficiently large n. If all g;, 1 <7 <
ky, lies outside of B(M), then

Wlay kn, Fa) > / M 45,
B(4)

Since k, < Nk* and w(k) is (strictly) increasing function we have

W (ay,, kn, Fr) (kn)W(0,ky, F,) because g, is optimal for F,
(NE* YW (0, kn, Fy)
w(NE) / lzlldF s,

o0

<w
<w

Al

If we choose M such that w(Nk*) [ ||z||dF < fB(%) |2 |dF, then there must even-
tually be at least one of the optimal centers a,;, 1 < ¢ < k,,, within B(M),thus
@mkn € T. Since the graphs of elements of 7 = {ag,k; (@1, ,a;) € Ck, k <
Nk*} form a Vapnik-Chervonenkis class (see Pollard, 1984) and sups $a7k <o
for a ® with [ ®(-)dF < oo provided [ ||z||dF < oo and k < Nk*, we have the
follows by using properties of Vapnik-Chervonankis classes.

sup[/den—/de| 2350
T
= liminfinf(/den -—/de) >0
T

= liminf( / ba, kn@Fn — / b jadF) >0 as @, €T
Therefore for a given € > 0,

W(g’.na k”l'lF) < W(Qﬂ,akn)Fn) + €1 (Al)
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and
Wa,, kn, Fr) < W(a* k*, F,) because a,, k, is optimal for F,
- W(a*, k*,F) a.s.
< W(a,, kn, F) because a*,k* is optimal for F
Hence

=>W(Qnakna-pn) ( k*aF)+€2

<W(a",
S W(g_"m knaF) + €9
SW(ﬁnﬂknaFn)+51 + €2 by (A.1)

From this we get

W (@p, kn, F) — W(a*, k*, F) < e1 + €2
As €1,€2 > 0 was arbitrarily chosen, we thus obtain
W(ay,, kn, F) — W(a*,k*, F) a.s. (A.2)

According to the uniqueness assumption of £* and a* finally, it follows from (A.2)
theorem holds true. |

Proof of Theorem 2.2 By Theorem 2.1 k,, converges to k* almost surely. Thus
k, = k* for sufficiently large n. Let ¢, = (¢p1,Cn2,- " » Cni~) Satisfy

W (cn, K*, Fn) = inf W (a, k*, Fr)
and

v, = (invgn%"' ,p-nk‘)
= I(kn = k*)(gnhQnZa T ’.a_'nk*) + I(kn # k*)(§n1,9n27' e ,an*)

where I(-) is an indicator function. If we set a pK x 1 vector v, = (v,,0),
then v, = B for sufficiently large n, and v/n(v, — B*) and /n(B, — B*) are
stochastically equivalent. Since

” (Qn,k*yFn) = lnf ” (Q)k*an)
a
by C.L.T. of sample k-spatial medians

Vv, —a*) - N(Q,IVTY)
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Vi, - ) -5 N, T)

Then, we have v/7i(8_ — ) — N(Q,T) O

Proof of Theorem 2.3 By the result of Pollard (1981), W{a,,, k, F,) converges
to W(a*, k, F') almost surely. Since e,y is a linear combination of W(a,,, k, Fy,)’s,
it is clear that e,x converges to &; of (2.3) almost surely. Therefore, ¢, from (2.5)
converges to ¢* from (2.4) almost surely as n tends to co. O
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