• 제목/요약/키워드: k-shell Decomposition

검색결과 52건 처리시간 0.021초

$CaCO_3$/Poly ethyl methacrylate를 이용한 무독성 혼합라텍스의 개발 (A Development of Nontoxic Composite Latex Using $CaCO_3$/PEMA)

  • 설수덕;이선룡;이내우
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.133-139
    • /
    • 2002
  • Core-shell polymers of inorganic/organic pair, which are consisted of both core and shell component, were synthesized by sequential emulsion polymerization using ethyl methacrylate (EMA) as a shell monomer and ammonium persulfate as initiator. We found that $CaCO_3$ core should be prepared by adding 2.0wt% SDBS(sodium dodecyl benzene sulfonate), $CaCO_3$ core/PEMA shell polymerization was carried out on the surface of $CaCO_3$ particle during EMA shell polymerization in the core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring the degree on decomposition of $CaCO_3$ by HCI solution, thermal decomposition of polymer composite on thermogravimetric analyzer, glass transition temperature on differential scanning calorimeter, and morphology using scanning electron microscope.

소셜 네트워크에서 k-쉘 분해를 이용한 사용자 영향력 판별 (User Influence Determination using k-shell Decomposition in Social Networks)

  • 최재용;임종태;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.46-54
    • /
    • 2022
  • 소셜 네트워크에서 영향력을 판별하기 위한 기존 기법들은 소셜 네트워크에서 활동하지 않는 사용자의 수가 증가되는 상황에서 활동을 중단하기 전에 기존 관계를 삭제하거나 갱신하지 않기 때문에 정확하게 사용자의 영향력을 판별하지 못한다. 본 논문에서는 소셜 네트워크의 사용자 생성 일자를 기반으로 한 시간적 k-쉘 분해 방법을 사용하여 영향력 있는 사용자들을 판별하는 기법을 제안한다. 소셜 네트워크에서 오래된 사용자들의 영향력이 높아지는 문제점을 해결하기 위해 주변 이웃의 노화에 따른 감쇠 계수를 k-쉘 분해와 연령 별 차수 중심성을 적용한다. 연령-감쇠 k-쉘 분해와 연령 별 차수 중심성에 감쇠 계수 및 연령에 따른 가중치들을 적용해 현 시점에서 영향력 있는 사용자들을 판별한다. 제안하는 기법의 우수성을 입증하기 위해 다양한 성능 평가를 수행한다.

무기/유기 Core-Shell 에멀젼 고분자의 합성 (Synthesis of Inorganic/Organic Core-Shell Polymer)

  • 김남석;김덕술;박근호
    • 한국응용과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.265-272
    • /
    • 2002
  • $CaCO_{3}$ absorbed sodium lauryl sulfate (SLS) surfactant was prepared, Core-shell polymers of inorganic/organic pair, which have both core and shell component, were synthesized by sequential emulsion polymerization using styrene(St) as a shell monomer and potasium persulfate (KPS) as an initiator, We found that when $CaCO_{3}$; core prepared by adding 2,0 wt% SLS, $CaCO_{3}$ core/PSt shell polymerization was carried out on the surface of $CaCO_{3}$ particle without forming the new PSt particle during St shell polymerization in the inorganic/organic core-shell polymer preparation, The structure of core-shell polymer were investigated by measuring the degree of decomposition of $CaCO_{3}$ using HCl solution, thermal decomposition of polymer composite using thermogravimetric analyzer and morphology by scanning electron microscope.

An independent distortional analysis method of thin-walled multicell box girders

  • Park, Nam-Hoi;Kang, Young-Jong;Kim, Hee-Joong
    • Structural Engineering and Mechanics
    • /
    • 제21권3호
    • /
    • pp.275-293
    • /
    • 2005
  • When a thin-walled multicell box girder is subjected to an eccentric load, the distortion becomes an important global response in addition to flexure and torsion. The three global responses appear in a combined form when a conventional shell element is used thus it is not an easy task to examine the three global responses separately. This study is to propose an analysis method using conventional shell element in which the three global responses can be separately decomposed. The force decomposition method which was designed for a single-cell box girder by Nakai and Yoo is expanded herein to multicell box girders. The eccentric load is decomposed in the expanded method into flexural, torsional, and multimode distortional forces by using the force equilibrium. From the force decomposition, the combined global responses of multicell box girders can be resolved into separate responses and the distortional response which is of primary concern herein can be obtained separately. It is shown from a series of extensive comparative studies using three box girder bridge models that the expanded method produces accurate decomposed results. Noting that the separate consideration of individual global response is of paramount importance for optimized multicell box girder design, it can be said that the proposed expanded method is extremely useful for practicing engineers.

A return mapping algorithm for plane stress and degenerated shell plasticity

  • Liu, Z.;Al-Bermani, F.G.A.
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.185-192
    • /
    • 1995
  • A numerical algorithm for plane stress and shell elasto-plasticity is presented in this paper. The proposed strain decomposition (SD) algorithm is an elastic predictor/plastic corrector algorithm, and in the context of operator splitting, is a return mapping algorithm. However, it differs significantly from other return mapping algorithms in that only the necessary response functions are used without invoking their gradients, and the stress increment is updated only at the end of the time step. This makes the proposed SD algorithm more suitable for materials with complex yield surfaces and will guard against error accumulation during the time step. Comparative analyses of structural systems using the proposed strain decomposition (SD) algorithm and the iterative radial return (IRR) algorithm are presented. The results demonstrate the accuracy and usefulness of the proposed algorithm.

이산화규소/아크릴계 유기물의 코어-셀 합성에서 음이온 계면활성제의 영향 (The Effect of Anionic Surfactants in Synthesizing Silicone Dioxide/Acrylate Core-Shell Polymer)

  • 김덕술;박근호
    • 한국응용과학기술학회지
    • /
    • 제26권2호
    • /
    • pp.199-204
    • /
    • 2009
  • Silicone dioxide absorbed polyoxyethylene alkylether sulfate (EU-S133D) surfactant was prepared. Core-shell polymers of inorganic/organic pair, which have both core and shell component, were synthesized by sequential emulsion polymerization using Acrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We found that when Acrylate core prepared by adding 2.0 wt% EU-S133D, silicone dioxide/Acrylate core-shell polymerization was carried out on the surface of silicone dioxide particle without forming the new silicone dioxide particle during acrylate shell polymerization in the inorganic/organic core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of latex by scanning electron microscope(SEM).

$TiO_2$/Acrylate 코어-셀 합성에서 계면활성제의 영향에 관한 연구 (A Study on the Effect of Surfactant in Synthesizing Titanium Dioxide/Acrylate Core-Shell Polymer)

  • 김덕술;박근호
    • 한국응용과학기술학회지
    • /
    • 제27권1호
    • /
    • pp.56-60
    • /
    • 2010
  • Titanium dioxide particles are used as photocatalysts, sensors, adsorbents and catalyst. Core-shell polymers of inorganic/organic pair, which have both core and shell component, were synthesized by sequential emulsion polymerization using Acrylate as a shell monomer and potassium persulfate (KPS) as an initiator. We found that when Acrylate core prepared by adding 0.5~2.0 wt% EU-S133D, Titanium dioxide / Acrylate core-shell polymerization was carried out on the surface of Titanium dioxide particle without forming the new Titanium dioxide particle during acrylate shell polymerized in the inorganic/organic core-shell polymer preparation. The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer(TGA) and morphology of latex by scanning electron microscope(SEM).

알루미늄합금 중력금형주조용 쉘중자 가스발생량의 정량적 예측 (Quantitative Prediction of Gas Evolved by Shell Core in Permanent Mold Casting of Aluminum Alloy)

  • 김기영;이민수
    • 한국주조공학회지
    • /
    • 제18권5호
    • /
    • pp.481-487
    • /
    • 1998
  • Shell sand is widely used to make a complex shape castings due to its good collapsibility. When molten metal is poured into the mold, various gases are generated by the thermal decomposition of binder in the shell core. Casting defects such as blow hole and blister come from these gases. If it is possible to predict the evolution of gas quantitatively, it may provide effective solutions for minimizing the casting defects. To examine the gas evolution by shell core quantitatively, casting experiment and calculation were carried out. Gas pressure and gas volume evolved by shell core were measured in the experiment, and temperature distribution in the shell core was obtained by heat transfer analysis. From the result above, prediction on the gas volume evolved during pouring was tried. As forming pressure of the shell core increased and forming temperature decreased, the gas evolution increased. There was a close relationship between the calculated gas volume evolved and the measured one.

  • PDF

이산화규소/스티렌의 코어-셀 합성에서 음이온 계면활성제의 영향 (Effect of Anionic Surfactants in Synthesizing Silicone Dioxide/Styrene Core-Shell Polymer)

  • 박근호
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.404-409
    • /
    • 2008
  • The core-shell composite particles of inorganic/organic were polymerized by using styrene(St) as a shell monomer and potassium persulfate (KPS) as an initiator. We studied the effect of core-shell structure of silicone dioxide/styrene in the presence of an anionic surfactant sodium lauryl sulfate (SLS) and polyoxyethylene alky lether sulfate (EU-S133D). We found that when $SiO_2$ core/PSt shell polymerization was prepared on the surface $SiO_2$ particle, to minimize the coagulation during the shell polymerization, the optimum conditions were at concentration of $2.56{\times}10^{-2}mole/L$ SLS. The structure of core-shell polymer was confirmed by measuring the thermal decomposition of polymer composite using thermogravimetric analyzer and morphology of core-shell polymer particles by transmission electron microscope (TEM).

Polyoxyethylene Alkylether Sulfate 계면활성제를 사용한 무기/유기 코어-셀의 합성 (Synthesis of Inorganic/Organic Core-Shell Polymer Using Polyoxyethylene Alkylether Sulfate as a Surfactant)

  • 김덕술;박근호
    • 한국응용과학기술학회지
    • /
    • 제27권1호
    • /
    • pp.93-97
    • /
    • 2010
  • Silicone dioxide absorbed polyoxyethylene alkylether sulfate (EU-S75D) surfactant was prepared. The core-shell composite of inorganic/organic were polymerized by using styrene(St) as a shell monomer and potassium persulfate(KPS) as an initiator. We studied the effect of surfactants on the core-shell structure of silicone dioxide/styrene in the presence of an anionic surfactant lauryl sulfate(SLS). The structure of core-shell polymer were investigated by measuring to the thermal decomposition of polymer composite using thermogravimetric analyzer(TGA) and morphology of latex by scanning electron microscope(SEM).