• Title/Summary/Keyword: k-mean segmentation

Search Result 112, Processing Time 0.03 seconds

DTM Generation and Buildings Detection Using LIDAR Data

  • Shao, Yi-Chen;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.923-926
    • /
    • 2003
  • In this paper we propose a scheme to generate DTM and detect buildings on DSM generated from LIDAR data. Two stages are performed. The first stage is to perform object segmentation by using two morphology operations namely, flattening and H-Dome transformation. After filtering out the object points above the ground, we used the non-object points to generate DTM. The second stage is to detect buildings from the objects by analyzing differential slopes. The test data is in raster form with 1m spacing around Hsin-Chu Scientific Area in Taiwan. The mean error is -0.16m and the RMSE is 0.45m for DTM generation. The successful rate for building detection is 87.7%.

  • PDF

Improvement of Disparity Map using Loopy Belief Propagation based on Color and Edge (Disparity 보정을 위한 컬러와 윤곽선 기반 루피 신뢰도 전파 기법)

  • Kim, Eun Kyeong;Cho, Hyunhak;Lee, Hansoo;Wibowo, Suryo Adhi;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.502-508
    • /
    • 2015
  • Stereo images have an advantage of calculating depth(distance) values which can not analyze from 2-D images. However, depth information obtained by stereo images has due to following reasons: it can be obtained by computation process; mismatching occurs when stereo matching is processing in occlusion which has an effect on accuracy of calculating depth information. Also, if global method is used for stereo matching, it needs a lot of computation. Therefore, this paper proposes the method obtaining disparity map which can reduce computation time and has higher accuracy than established method. Edge extraction which is image segmentation based on feature is used for improving accuracy and reducing computation time. Color K-Means method which is image segmentation based on color estimates correlation of objects in an image. And it extracts region of interest for applying Loopy Belief Propagation(LBP). For this, disparity map can be compensated by considering correlation of objects in the image. And it can reduce computation time because of calculating region of interest not all pixels. As a result, disparity map has more accurate and the proposed method reduces computation time.

인위적 데이터를 이용한 군집분석 프로그램간의 비교에 대한 연구

  • 김성호;백승익
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2001
  • Over the years, cluster analysis has become a popular tool for marketing and segmentation researchers. There are various methods for cluster analysis. Among them, K-means partitioning cluster analysis is the most popular segmentation method. However, because the cluster analysis is very sensitive to the initial configurations of the data set at hand, it becomes an important issue to select an appropriate starting configuration that is comparable with the clustering of the whole data so as to improve the reliability of the clustering results. Many programs for K-mean cluster analysis employ various methods to choose the initial seeds and compute the centroids of clusters. In this paper, we suggest a methodology to evaluate various clustering programs. Furthermore, to explore the usability of the methodology, we evaluate four clustering programs by using the methodology.

  • PDF

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.

Segmentation of the Home Meal Replacement Product Market by Food-Related Lifestyle of Japanese Consumers (일본소비자의 식생활라이프스타일에 따른 HMR 제품 시장세분화)

  • Park, Si-Eun;Yi, Na-Young;Hong, Wan-Soo
    • Korean journal of food and cookery science
    • /
    • v.32 no.4
    • /
    • pp.492-502
    • /
    • 2016
  • Purpose: The purposes of this study were to identify the segments of the Home Meal Replacement (HMR) market according to food-related lifestyle of Japanese consumers, and to investigate its demographic characteristics, the HMR purchase status and needs of new HMR product development. Methods: A total of 2,720 domestic consumers living in Japan were surveyed using a self-administered questionnaire and 488 responses were returned. Excluding responses with significant missing data, 467 responses were used for data analysis. Results: As a result of cluster analysis, three consumer segments were identified. The diet-highly concerned segment had the highest food-related lifestyle score, followed by the diet-moderately concerned segment, and the diet-unconcerned segment (p<0.001). A significant difference in demographic characteristics among the three segments was found with respect to the type of residence (p<0.05). There were significant differences in the main place (p<0.01) and average expense (p<0.001) for HMR purchases by food-related lifestyle segments. In the case of new HMR products that need further development, 'low-sodium products' had the highest demand scores in all three segments. In the diet-highly concerned segment, the mean scores of demand for new products were significantly higher than those in the other segments (p<0.001). Conclusion: The findings of this study can be used to develop new products for the Japanese' HMR market. The segments identified in this study should be updated and revised regularly to reflect changes in the characteristics of each food-related lifestyle segment.

Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.559-568
    • /
    • 2016
  • For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.

Experiments of Individual Tree and Crown Width Extraction by Band Combination Using Monthly Drone Images (월별 드론 영상을 이용한 밴드 조합에 따른 수목 개체 및 수관폭 추출 실험)

  • Lim, Ye Seul;Eo, Yang Dam;Jeon, Min Cheol;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Drone images with high spatial resolution are emerging as an alternative to previous studies with extraction limits in high density forests. Individual tree in the dense forests were extracted from drone images. To detect the individual tree extracted through the image segmentation process, the image segmentation results were compared between the combination of DSM and all R,G,B band and the combination of DSM and R,G,B band separately. The changes in the tree density of a deciduous forest was experimented by time and image. Especially the image of May when the forests are dense, among the images of March, April, May, the individual tree extraction rate based on the trees surveyed on the site was 50%. The analysis results of the width of crown showed that the RMSE was less than 1.5m, which was the best result. For extraction of the experimental area, the two sizes of medium and small trees were extracted, and the extraction accuracy of the small trees was higher. The forest tree volume and forest biomass could be estimated if the tree height is extracted based on the above data and the DBH(diameter at breast height) is estimated using the relational expression between crown width and DBH.

The Character Area Extraction and the Character Segmentation on the Color Document (칼라 문서에서 문자 영역 추출믹 문자분리)

  • 김의정
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.444-450
    • /
    • 1999
  • This paper deals with several methods: the clustering method that uses k-means algorithm to abstract the area of characters on the image document and the distance function that suits for the HIS coordinate system to cluster the image. For the prepossessing step to recognize this, or the method of characters segmentate, the algorithm to abstract a discrete character is also proposed, using the linking picture element. This algorithm provides the feature that separates any character such as the touching or overlapped character. The methods of projecting and tracking the edge have so far been used to segment them. However, with the new method proposed here, the picture element extracts a discrete character with only one-time projection after abstracting the character string. it is possible to pull out it. dividing the area into the character and the rest (non-character). This has great significance in terms of processing color documents, not the simple binary image, and already received verification that it is more advanced than the previous document processing system.

  • PDF

A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching (특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • In this paper, we propose a multi-vehicle object detection algorithm using feature point matching that tracks efficient vehicle objects. The proposed algorithm extracts the feature points of the vehicle using the FAST algorithm for efficient vehicle object tracking. And True if the feature points are included in the image segmented into the 5X5 region. If the feature point is not included, it is processed as False and the corresponding area is blacked to remove unnecessary object information excluding the vehicle object. Then, the post processed area is set as the maximum search window size of the vehicle. And A minimum search window using the outermost feature points of the vehicle is set. By using the set search window, we compensate the disadvantages of the search window size of mean-shift algorithm and track vehicle object. In order to evaluate the performance of the proposed method, SIFT and SURF algorithms are compared and tested. The result is about four times faster than the SIFT algorithm. And it has the advantage of detecting more efficiently than the process of SUFR algorithm.

Personalized insurance product based on similarity (유사도를 활용한 맞춤형 보험 추천 시스템)

  • Kim, Joon-Sung;Cho, A-Ra;Oh, Hayong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1599-1607
    • /
    • 2022
  • The data mainly used for the model are as follows: the personal information, the information of insurance product, etc. With the data, we suggest three types of models: content-based filtering model, collaborative filtering model and classification models-based model. The content-based filtering model finds the cosine of the angle between the users and items, and recommends items based on the cosine similarity; however, before finding the cosine similarity, we divide into several groups by their features. Segmentation is executed by K-means clustering algorithm and manually operated algorithm. The collaborative filtering model uses interactions that users have with items. The classification models-based model uses decision tree and random forest classifier to recommend items. According to the results of the research, the contents-based filtering model provides the best result. Since the model recommends the item based on the demographic and user features, it indicates that demographic and user features are keys to offer more appropriate items.