• Title/Summary/Keyword: k-corner

Search Result 902, Processing Time 0.028 seconds

EFFECTS OF ROUNDING CORNERS ON THE FLOW PAST A SQUARE CYLINDER (정방형 실린더의 모서리 원형화에 따른 유동 불안정성의 변화)

  • Park, Doohyun;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • This study performed numerical analysis for the characteristics of flow-induced forces and the flow instability depending on the cross-sectional shape of the cylinder in laminar flow. To implement the cylinder cross-section, we adopted an Immersed Boundary Method with marker particles. We analyzed flow characteristics based on the radius of corner curvature. Main parameters are corner radius and Reynolds number (Re). With Re = 40, 50, 150 we calculated the flow field, drag coefficient, RMS of lift coefficient, pressure coefficient and Strouhal number in conjunction with the corner radius variation. Also, we calculated critical Reynolds number ($Re_c$) depending on the corner radius variation.

Harris Corner Detection for Eyes Detection in Facial Images

  • Navastara, Dini Adni;Koo, Kyung-Mo;Park, Hyun-Jun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.373-376
    • /
    • 2013
  • Nowadays, eyes detection is required and considered as the most important step in several applications, such as eye tracking, face identification and recognition, facial expression analysis and iris detection. This paper presents the eyes detection in facial images using Harris corner detection. Firstly, Haar-like features for face detection is used to detect a face region in an image. To separate the region of the eyes from a whole face region, the projection function is applied in this paper. At the last step, Harris corner detection is used to detect the eyes location. In experimental results, the eyes location on both grayscale and color facial images were detected accurately and effectively.

  • PDF

Machining of Corner-cube Pattern on Accumulated Cu-Thin Plates (적층된 구리 박판의 코너 큐브 패턴의 가공)

  • Lee, Joon-Yong;Bae, Chan-Yeol;Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.109-114
    • /
    • 2016
  • This study presents the optimal hardness range for a coated layer of a workpiece when the diamond tool cuts the corner-cube pattern on the coated plates using an ultra-precision diamond-turning machine. Two kinds of coated plates, which have the hardness range of 211~328 Vickers hardness, are used on the first experiments. The form accuracy for the corner-cube pattern could be achieved through the following experiments using the accumulated thin copper plates in second experiments, having optimal 265~275 Vickers hardness based on the basic first experiments without tool wear. When the number of machining adjustments was increased to seven times, having machining depth was reduced successively in second experiment, a fine surface could be achieved without tool wear.

Flexural Vibration Analysis of Mindlin Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 Mindlin 직사각형 평판의 휨 진동해석)

  • Kim, Joo-Woo;Jung, Eui-Young;Kim, Seung-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.35-42
    • /
    • 2003
  • This paper provides the first known flexural vibration data for thick (Mindlin) rectangular plates having V-notches. The V-notch has bending moment and shear force singularities at its sharp corner due to the transverse vibratory bending motion. Based upon Mindlin plate theory, in which transverse shear deformation and rotary inertia effects are considered, the Ritz procedure is employed with a hybrid set of admissible functions assumed for the rotational and transverse vibratory displacements. This set includes: (1) a mathematically complete set of admissible algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained; and (2) an admissible set of Mindlin corner functions which account for the bending moment and shear force singularities at the sharp corner of the V-notch. Extensive convergence studies demonstrate the necessity of adding the Mindlin corner functions to achieve accurate frequencies for rectangular plates having sharp V-notches.

  • PDF

Effect of Reynolds number on compressible convex-corner flows

  • Chung, Kung-Ming;Chang, Po-Hsiung;Chang, Keh-Chin
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.443-454
    • /
    • 2014
  • An experimental study was conducted to investigate the effect of Reynolds number on compressible convex-corner flows, which correspond to an upper surface of a deflected flap of an aircraft wing. The flow is naturally developed along a flat plate with two different lengths, resulting in different incoming boundary layer thicknesses or Reynolds numbers. It is found that boundary layer Reynolds number, ranging from $8.04{\times}10^4$ to $1.63{\times}10^5$, has a minor influence on flow expansion and compression near the corner apex in the transonic flow regime, but not for the subsonic expansion flow. For shock-induced separated flow, higher peak pressure fluctuations are observed at smaller Reynolds number, corresponding to the excursion phenomena and the shorter region of shock-induced boundary layer separation. An explicit correlation of separation length with deflection angle is also presented.

A Fast Adaptive Corner Detection Based on Curvature Scale Space

  • Nguyen, Van Hau;Woo, Kyung-Haeng;Choi, Won-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.622-631
    • /
    • 2011
  • Corners play an important role in describing object features for pattern recognition and identification. This paper proposed a fast and adaptive corner detector in both coarse and fine scale, followed by the framework of the curvature scale space (CSS). An adaptive curvature threshold and evaluating of angles of corner candidates are added to original CSS to remove round corners and false corners in the detecting process. The efficiency of proposed method is compared to other popular detectors in both accuracy criteria, stability and time consuming. Results illustrate that the proposed method performs extremely surpass in both areas.

Corner Inspection of Autoclave-cured L-shaped Composite Structure using Pulse-echo Rotation Scanning Scheme based on Laser Ultrasonic (레이저 초음파 기반 반사식 회전 검사 기법을 이용한 오토클레이브 가공 L 형 복합재 구조물의 모서리 검사)

  • Lee, Young-Jun;Lee, Jung-Ryul;Hong, Sung-Jin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.246-250
    • /
    • 2018
  • In this paper, laser ultrasonic rotation scanning method was proposed to inspect and visualize defects in corner section of curved composite structure. L-shaped composite specimen with defects in its corner section were inspected using laser ultrasonic rotation scanning method. L-shaped specimens had artificial defects at three different depths to simulate delamination damage. All artificial defects were detected clearly in different time-of-flight according to their depths. Inspection result showed that the proposed method is suitable to inspect round corner section of curved composite structure without any special tools.

Effect of aerodynamic modifications on the surface pressure patterns of buildings using proper orthogonal decomposition

  • Tse, K.T.;Chen, Zeng-Shun;Lee, Dong-Eun;Kim, Bubryur
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.227-238
    • /
    • 2021
  • This study analyzed the pressure patterns and local pressure of tall buildings with corner modifications (recessed and chamfered corner) using wind tunnel tests and proper orthogonal decomposition (POD). POD can distinguish pressure patterns by POD mode and more dominant pressure patterns can be found according to the order of POD modes. Results show that both recessed and chamfered corners effectively reduced wind-induced responses. Additionally, unique effects were observed depending on the ratio of corner modification. Tall building models with recessed corners showed fluctuations in the approaching wind flow in the first POD mode and vortex shedding effects in the second POD mode. With large corner modification, energy distribution became small in the first POD mode, which shows that the effect of the first POD mode reduced. Among building models with chamfered corners, vortex shedding effects appeared in the first POD mode, except for the model with the highest ratio of corner modifications. The POD confirmed that both recessed and chamfered corners play a role in reducing vortex shedding effects, and the normalized power spectral density peak value of modes showing vortex shedding was smaller than that of the building model with a square section. Vortex shedding effects were observed on the front corner surfaces resulting from corner modification, as with the side surface. For buildings with recessed corners, the local pressure on corner surfaces was larger than that of side surfaces. Moreover, the average wind pressure was effectively reduced to 88.42% and 92.40% in RE1 on the windward surface and CH1 on the side surface, respectively.

Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring

  • Li, Ao;Fang, Qian;Zhang, Dingli;Luo, Jiwei;Hong, Xuefei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.561-569
    • /
    • 2018
  • Ground vibration is one of the most undesirable effects induced by blast operation in mountain tunnels, which could cause negative impacts on the residents living nearby and adjacent structures. The ground vibration effects can be well represented by peak particle velocity (PPV) and corner frequency ($f_c$) on the ground. In this research, the PPV and the corner frequency of the mountain surface above the large-span tunnel of the new Badaling tunnel are observed by using the microseismic monitoring technique. A total of 53 sets of monitoring results caused by the blast inside tunnel are recorded. It is found that the measured values of PPV are lower than the allowable value. The measured values of corner frequency are greater than the natural frequencies of the Great Wall, which will not produce resonant vibration of the Great Wall. The vibration effects of associated parameters on the PPV and corner frequency which include blast charge, rock mass condition, and distance from the blast point to mountain surface, are studied by regression analysis. Empirical formulas are proposed to predict the PPV and the corner frequency of the Great Wall and surface structures due to blast, which can be used to determine the suitable blast charge inside the tunnel.