This paper proposes an efficient index scheduling technique for kNN query processing in multiple wireless broadcast channel environment. Previous works have to wait for the next cycle if the required child nodes of the same parent node are allocated in the same time slot on multiple channel. Our proposed method computes the access frequencies of each node of R tree at the server before the generation of the R-tree index broadcast schedule. If they have high frequencies, we allocate them serially on the single channel. If they have low frequencies, we allocate them in parallel on the multiple channels. As a result, we can reduce the index node access conflicts and the long broadcast cycle. The performance evaluation shows that our scheme gives the better performance than the existing schemes.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.11
/
pp.3896-3915
/
2014
The Reverse k Nearest Neighbor (RkNN) query is valuable for finding objects influenced by a specific object and is widely used in both scientific and commercial systems. However, the influence level of each object is unknown, information that is critical for some applications (e.g. target marketing). In this paper, we propose a new query type, Ordered Reverse k Nearest Neighbor (ORkNN), and make efforts to adapt it in an on-demand scenario. An Order-k Voronoi diagram based approach is used to answer ORkNN queries. In particular, for different values of k, we pre-construct only one Voronoi diagram. Algorithms on both the server and the clients are presented. We also present experimental results that suggest our proposed algorithms may have practical applications.
In this paper, we propose an optimization scheme for a k-Nearest Neighbor(k-NN) query, which finds k objects closest to the query in the high dimensional feature vectors. The k-NN query is converted and processed into a range query based on the range that is likely to contain k data. In this paper, we propose an optimization scheme using DNN model to derive an optimal range that can reduce processing cost and accelerate search speed. The entire system of the proposed scheme is composed of online and offline modules. In the online module, a query is actually processed when it is issued from a client. In the offline module, an optimal range is derived for the query by using the DNN model and is delivered to the online module. It is shown through various performance evaluations that the proposed scheme outperforms the existing schemes.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.103-104
/
2016
본 논문에서는 GPS의 보급과 무선 통신의 발달로 급격하게 성장 중인 위치 기반 서비스에 대한 연구를 진행하였다. 위치 기반 서비스를 효율적으로 활용하기 위해서 연속 범위 질의(continuous range query)에 비공간적 특성과 K-최근접 질의를 결합한 안전 영역 할당 기법에 대해서 연구를 진행했다. 기존의 안전 영역은 객체간의 거리만으로 할당을 했지만, 본 논문에서는 객체간의 속성이 다르면 안전 영역을 할당하지 않는 기법을 제안했다. 실험결과 기존의 알고리즘 보다 통신 비용이 감소함을 확인할 수 있었지만 K 값에 따른 오차가 발생함을 확인했고 향후, 연구를 지속할 필요가 있다.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.261-266
/
2006
GIS분야와 유비쿼터스 환경의 진보로 언제 어디서나 유무선으로 정보를 주고 받는 환경의 계선에 대한 발전이 계속 되어 왔다. 이런 환경에서 이동객체의 이용도가 증대됨에 따라 대용량의 객체 처리를 위해 분산 처리방식이 적용 되었다. 기존 연구의 k-NN질의는 단일 노드에서 질의 처리 비용의 절감에 중점을 두어 분할된 노드에서의 질의처리에 관련된 연구가 부족하였다. 분할된 노드에서 질의를 처리하기 위해서 고비용이 요구되는 k-NN질의를 위하여 본 논문에서는 Hybrid k-NN질의처리 방식을 제안한다. 제안방식은 k-NN질의와 범위질의 특성을 결합한 형태로 분할된 노드에 질의처리를 가능하게 하고, 질의처리 시 k-NN질의와 범위질의의 혼합으로 k-NN질의의 고비용을 절감하는 방법이다. 이 방법은 GALIS 프로토타입의 SLDS의 질의 처리 부분을 개선에 활용할 수 있다.
Park, Yong-Hun;Seo, Dong-Min;Bok, Kyoung-Soo;Lee, Byoung-Yup;Yoo, Jae-Soo
Journal of KIISE:Databases
/
v.36
no.3
/
pp.215-225
/
2009
Recently, various methods have been proposed to process k-NN (k-Nearest Neighbors) queries efficiently. However the previous methods have problems that they access additional cells unnecessarily and spend the high computation cost to find the nearest cells. In this paper, to overcome the problems, we propose a new method to process k-NN queries using the patterns of the distance relationship between the cells in a grid. The patterns are composed of the relative coordinates of cells sorted by the distance from certain points. Since the proposed method finds the nearest cells to process k-NN queries with traversing the patterns sequentially, it saves the computation cost. It is shown through the various experiments that out proposed method is much better than the existing method, CPM, in terms of the query processing time and the storage overhead.
Proceedings of the Korean Information Science Society Conference
/
2006.06c
/
pp.46-48
/
2006
This paper addresses the problem of monitoring continuous k-nearest neighbor (k-NN) queries. Given a set of moving (or static) objects and a set of moving (or static) query points, monitoring continuous k-NN query retrieves and updates the closest k objects to a query point continually. In order to support location based services (LBSs) in highly dynamic environments, where objects and/or queries are frequently moving, monitoring continuous queries require real-time updated results when objects and/or queries change their locations. Thus, it is important to minimize time delay for maintaining up to date the results. In this paper, we present monitoring method to shorten time delay for updating continuous k-NN queries based on the notion of result region and the minimum bounding rectangle enclosing all objects in each cell, referred to as c-MBR, in the grid index structure. Simulations are conducted to show the efficiency of the proposed method.
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.733-736
/
2014
최근 대용량 데이터에 대한 효율적인 데이터 분석 기법이 활발히 연구되고 있다. 대표적인 기법으로는 맵리듀스 환경에서 보로노이 다이어그램을 이용한 k 최근접점 조인(VkNN-join) 알고리즘이 존재한다. VkNN-join 알고리즘은 부분집합 Ri에 연관된 부분집합 Sj만을 후보탐색 영역으로 선정하여 질의를 처리하기 때문에 질의처리 시간을 감소시킨다. 그러나 VkNN-join은 색인 구축 비용이 높으며, kNN 연산 오버헤드가 큰 문제점이 존재한다. 이를 해결하기 위해, 본 논문에서는 대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 시드 기반의 동적 분할을 통해 색인구조 구축비용을 감소시킨다. 또한 시드 간 평균 거리를 기반으로 후보 영역을 선정함으로써, 연산 오버헤드를 감소시킨다. 아울러, 성능 평가를 통해 제안하는 기법이 질의처리 시간 측면에서 기존 기법에 비해 우수함을 나타낸다.
With the growing popularity of smart devices, various location based services have been providing to users. Recently, some location based social applications that combine social services and location based services have been emerged. The demands of a k-nearest neighbors(k-NN) query which finds k closest locations from a user location are increased in the location based social network services. In this paper, we propose an approximate k-NN query processing method for fast response time in a large number of users environments. The proposed method performs efficient stream processing using big data distributed processing technologies. In this paper, we also propose a modified grid index method for indexing a large amount of location data. The proposed query processing method first retrieves the related cells by considering a user movement. By doing so, it can make an approximate k results set. In order to show the superiority of the proposed method, we conduct various performance evaluations with the existing method.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.6
/
pp.271-278
/
2004
In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.