• Title/Summary/Keyword: k-NN query

Search Result 63, Processing Time 0.021 seconds

An R-tree Index Scheduling Method for kNN Query Processing in Multiple Wireless Broadcast Channels (다중 무선 방송채널에서 kNN 질의 처리를 위한 R-tree 인덱스 스케줄링 기법)

  • Jung, Eui-Jun;Jung, Sung-Won
    • Journal of KIISE:Databases
    • /
    • v.37 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • This paper proposes an efficient index scheduling technique for kNN query processing in multiple wireless broadcast channel environment. Previous works have to wait for the next cycle if the required child nodes of the same parent node are allocated in the same time slot on multiple channel. Our proposed method computes the access frequencies of each node of R tree at the server before the generation of the R-tree index broadcast schedule. If they have high frequencies, we allocate them serially on the single channel. If they have low frequencies, we allocate them in parallel on the multiple channels. As a result, we can reduce the index node access conflicts and the long broadcast cycle. The performance evaluation shows that our scheme gives the better performance than the existing schemes.

Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

  • Li, Li;Li, Guohui;Zhou, Quan;Li, Yanhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3896-3915
    • /
    • 2014
  • The Reverse k Nearest Neighbor (RkNN) query is valuable for finding objects influenced by a specific object and is widely used in both scientific and commercial systems. However, the influence level of each object is unknown, information that is critical for some applications (e.g. target marketing). In this paper, we propose a new query type, Ordered Reverse k Nearest Neighbor (ORkNN), and make efforts to adapt it in an on-demand scenario. An Order-k Voronoi diagram based approach is used to answer ORkNN queries. In particular, for different values of k, we pre-construct only one Voronoi diagram. Algorithms on both the server and the clients are presented. We also present experimental results that suggest our proposed algorithms may have practical applications.

k-NN Query Optimization Scheme Based on Machine Learning Using a DNN Model (DNN 모델을 이용한 기계 학습 기반 k-최근접 질의 처리 최적화 기법)

  • We, Ji-Won;Choi, Do-Jin;Lee, Hyeon-Byeong;Lim, Jong-Tae;Lim, Hun-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.715-725
    • /
    • 2020
  • In this paper, we propose an optimization scheme for a k-Nearest Neighbor(k-NN) query, which finds k objects closest to the query in the high dimensional feature vectors. The k-NN query is converted and processed into a range query based on the range that is likely to contain k data. In this paper, we propose an optimization scheme using DNN model to derive an optimal range that can reduce processing cost and accelerate search speed. The entire system of the proposed scheme is composed of online and offline modules. In the online module, a query is actually processed when it is issued from a client. In the offline module, an optimal range is derived for the query by using the DNN model and is delivered to the online module. It is shown through various performance evaluations that the proposed scheme outperforms the existing schemes.

An Efficient Construction of Sage Regions for Combined K-NN Query and Non-Place Attributes (K-최근접 질의와 비공간 속성을 결합한 효율적인 안전 영역 할당 기법)

  • Chung, Jae-Wool;Kim, Ung-Mo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.103-104
    • /
    • 2016
  • 본 논문에서는 GPS의 보급과 무선 통신의 발달로 급격하게 성장 중인 위치 기반 서비스에 대한 연구를 진행하였다. 위치 기반 서비스를 효율적으로 활용하기 위해서 연속 범위 질의(continuous range query)에 비공간적 특성과 K-최근접 질의를 결합한 안전 영역 할당 기법에 대해서 연구를 진행했다. 기존의 안전 영역은 객체간의 거리만으로 할당을 했지만, 본 논문에서는 객체간의 속성이 다르면 안전 영역을 할당하지 않는 기법을 제안했다. 실험결과 기존의 알고리즘 보다 통신 비용이 감소함을 확인할 수 있었지만 K 값에 따른 오차가 발생함을 확인했고 향후, 연구를 지속할 필요가 있다.

  • PDF

k-NN Query Process ing for Distributed Moving Object Dat abases (분산 이동객체 데이터베이스를 위한 k-NN질의 처리)

  • Han, Jong-Hyeong;Lee, Joon-Woo;Nah, Yun-Mook
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.261-266
    • /
    • 2006
  • GIS분야와 유비쿼터스 환경의 진보로 언제 어디서나 유무선으로 정보를 주고 받는 환경의 계선에 대한 발전이 계속 되어 왔다. 이런 환경에서 이동객체의 이용도가 증대됨에 따라 대용량의 객체 처리를 위해 분산 처리방식이 적용 되었다. 기존 연구의 k-NN질의는 단일 노드에서 질의 처리 비용의 절감에 중점을 두어 분할된 노드에서의 질의처리에 관련된 연구가 부족하였다. 분할된 노드에서 질의를 처리하기 위해서 고비용이 요구되는 k-NN질의를 위하여 본 논문에서는 Hybrid k-NN질의처리 방식을 제안한다. 제안방식은 k-NN질의와 범위질의 특성을 결합한 형태로 분할된 노드에 질의처리를 가능하게 하고, 질의처리 시 k-NN질의와 범위질의의 혼합으로 k-NN질의의 고비용을 절감하는 방법이다. 이 방법은 GALIS 프로토타입의 SLDS의 질의 처리 부분을 개선에 활용할 수 있다.

  • PDF

A k-NN Query Processing Method based on Distance Relation Patterns in Moving Object Environments (이동 객체 환경에서 거리 관계 패턴 기반 k-최근접 질의 처리 기법)

  • Park, Yong-Hun;Seo, Dong-Min;Bok, Kyoung-Soo;Lee, Byoung-Yup;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.215-225
    • /
    • 2009
  • Recently, various methods have been proposed to process k-NN (k-Nearest Neighbors) queries efficiently. However the previous methods have problems that they access additional cells unnecessarily and spend the high computation cost to find the nearest cells. In this paper, to overcome the problems, we propose a new method to process k-NN queries using the patterns of the distance relationship between the cells in a grid. The patterns are composed of the relative coordinates of cells sorted by the distance from certain points. Since the proposed method finds the nearest cells to process k-NN queries with traversing the patterns sequentially, it saves the computation cost. It is shown through the various experiments that out proposed method is much better than the existing method, CPM, in terms of the query processing time and the storage overhead.

Monitoring Continuous k-Nearest Neighbor Queries, using c-MBR

  • Jung Ha-Rim;Kang Sang-Won;Song Moon-Bae;Im Seok-Jin;Kim Jong-Wan;Hwang Chong-Sun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.46-48
    • /
    • 2006
  • This paper addresses the problem of monitoring continuous k-nearest neighbor (k-NN) queries. Given a set of moving (or static) objects and a set of moving (or static) query points, monitoring continuous k-NN query retrieves and updates the closest k objects to a query point continually. In order to support location based services (LBSs) in highly dynamic environments, where objects and/or queries are frequently moving, monitoring continuous queries require real-time updated results when objects and/or queries change their locations. Thus, it is important to minimize time delay for maintaining up to date the results. In this paper, we present monitoring method to shorten time delay for updating continuous k-NN queries based on the notion of result region and the minimum bounding rectangle enclosing all objects in each cell, referred to as c-MBR, in the grid index structure. Simulations are conducted to show the efficiency of the proposed method.

  • PDF

Design and Performance Analysis of MapReduce-based kNN join Query Processing Algorithm (맵리듀스 기반 kNN join 질의처리 알고리즘의 설계 및 성능평가)

  • Kim, TaeHoon;Lee, HyunJo;Chang, JaeWoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.733-736
    • /
    • 2014
  • 최근 대용량 데이터에 대한 효율적인 데이터 분석 기법이 활발히 연구되고 있다. 대표적인 기법으로는 맵리듀스 환경에서 보로노이 다이어그램을 이용한 k 최근접점 조인(VkNN-join) 알고리즘이 존재한다. VkNN-join 알고리즘은 부분집합 Ri에 연관된 부분집합 Sj만을 후보탐색 영역으로 선정하여 질의를 처리하기 때문에 질의처리 시간을 감소시킨다. 그러나 VkNN-join은 색인 구축 비용이 높으며, kNN 연산 오버헤드가 큰 문제점이 존재한다. 이를 해결하기 위해, 본 논문에서는 대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 시드 기반의 동적 분할을 통해 색인구조 구축비용을 감소시킨다. 또한 시드 간 평균 거리를 기반으로 후보 영역을 선정함으로써, 연산 오버헤드를 감소시킨다. 아울러, 성능 평가를 통해 제안하는 기법이 질의처리 시간 측면에서 기존 기법에 비해 우수함을 나타낸다.

Efficient k-Nearest Neighbor Query Processing Method for a Large Location Data (대용량 위치 데이터에서 효율적인 k-최근접 질의 처리 기법)

  • Choi, Dojin;Lim, Jongtae;Yoo, Seunghun;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.8
    • /
    • pp.619-630
    • /
    • 2017
  • With the growing popularity of smart devices, various location based services have been providing to users. Recently, some location based social applications that combine social services and location based services have been emerged. The demands of a k-nearest neighbors(k-NN) query which finds k closest locations from a user location are increased in the location based social network services. In this paper, we propose an approximate k-NN query processing method for fast response time in a large number of users environments. The proposed method performs efficient stream processing using big data distributed processing technologies. In this paper, we also propose a modified grid index method for indexing a large amount of location data. The proposed query processing method first retrieves the related cells by considering a user movement. By doing so, it can make an approximate k results set. In order to show the superiority of the proposed method, we conduct various performance evaluations with the existing method.

A Study on the Signal Processing for Content-Based Audio Genre Classification (내용기반 오디오 장르 분류를 위한 신호 처리 연구)

  • 윤원중;이강규;박규식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.271-278
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.