• Title/Summary/Keyword: k-Means clustering

Search Result 1,118, Processing Time 0.03 seconds

Clustering of Decision Making Units using DEA (DEA를 이용한 의사결정단위의 클러스터링)

  • Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.239-244
    • /
    • 2014
  • The conventional clustering approaches are mostly based on minimizing total dissimilarity of input and output. However, the clustering approach may not be helpful in some cases of clustering decision making units (DMUs) with production feature converting multiple inputs into multiple outputs because it does not care converting functions. Data envelopment analysis (DEA) has been widely applied for efficiency estimation of such DMUs since it has non-parametric characteristics. We propose a new clustering method to identify groups of DMUs that are similar in terms of their input-output profiles. A real world example is given to explain the use and effectiveness of the proposed method. And we calculate similarity value between its result and the result of a conventional clustering method applied to the example. After the efficiency value was added to input of K-means algorithm, we calculate new similarity value and compare it with the previous one.

RHadoop platform for K-Means clustering of big data (빅데이터 K-평균 클러스터링을 위한 RHadoop 플랫폼)

  • Shin, Ji Eun;Oh, Yoon Sik;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.609-619
    • /
    • 2016
  • RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. In this paper, we implement K-Means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. The main idea introduces a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. We showed that our K-Means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases. We also implemented Elbow method with MapReduce for finding the optimum number of clusters for K-Means clustering on large dataset. Comparison with our MapReduce implementation of Elbow method and classical kmeans() in R with small data showed similar results.

Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis (DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • A program for integrated gene expression profile analysis such as hierarchical clustering, K-means, fuzzy c-means, self-organizing map(SOM), principal component analysis(PCA), and singular value decomposition(SVD) was made for DNA chip data anlysis by using Matlab. It also contained the normalization method of gene expression input data. The integrated data anlysis program could be effectively used in DNA chip data analysis and help researchers to get more comprehensive analysis view on gene expression data of their own.

  • PDF

Proposal of Cluster Head Election Method in K-means Clustering based WSN (K-평균 군집화 기반 WSN에서 클러스터 헤드 선택 방법 제안)

  • Yun, Dai Yeol;Park, SeaYoung;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.447-449
    • /
    • 2021
  • Various wireless sensor network protocols have been proposed to maintain the network for a long time by minimizing energy consumption. Using the K-means clustering algorithm takes longer to cluster than traditional hierarchical algorithms because the center point must be moved repeatedly until the final cluster is established. For K-means clustering-based protocols, only the residual energy of nodes or nodes near the center point of the cluster is considered when the cluster head is elected. In this paper, we propose a new wireless sensor network protocol based on K-means clustering to improve the energy efficiency while improving the aforementioned problems.

  • PDF

Clustering Gene Expression Data by MCL Algorithm (MCL 알고리즘을 사용한 유전자 발현 데이터 클러스터링)

  • Shon, Ho-Sun;Ryu, Keun-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • The clustering of gene expression data is used to analyze the results of microarray studies. This clustering is one of the frequently used methods in understanding degrees of biological change and gene expression. In biological research, MCL algorithm is an algorithm that clusters nodes within a graph, and is quick and efficient. We have modified the existing MCL algorithm and applied it to microarray data. In applying the MCL algorithm we put forth a simulation that adjusts two factors, namely inflation and diagonal tent and converted them by making use of Markov matrix. Furthermore, in order to distinguish class more clearly in the modified MCL algorithm we took the average of each row and used it as a threshold. Therefore, the improved algorithm can increase accuracy better than the existing ones. In other words, in the actual experiment, it showed an average of 70% accuracy when compared with an existing class. We also compared the MCL algorithm with the self-organizing map(SOM) clustering, K-means clustering and hierarchical clustering (HC) algorithms. And the result showed that it showed better results than ones derived from hierarchical clustering and K-means method.

Automatic Dynamic Range Improvement Method using Histogram Modification and K-means Clustering (히스토그램 변형 및 K-means 분류 기반 동적 범위 개선 기법)

  • Cha, Su-Ram;Kim, Jeong-Tae;Kim, Min-Seok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1047-1057
    • /
    • 2011
  • In this paper, we propose a novel tone mapping method that implements histogram modification framework on two local regions that are classified using K-means clustering algorithm. In addition, we propose automatic parameter tuning method for histogram modification. The proposed method enhances local details better than the global histogram method. Moreover, the proposed method is fully automatic in the sense that it does not require intervention from human to tune parameters that are involved for computing tone mapping functions. In simulations and experimental studies, the proposed method showed better performance than existing histogram modification method.

Sensor Data Standardization using K-means Clustering in Distributed-Gateway System (분산 게이트웨이 환경에서의 K-means Clustering을 이용한 센서 데이터 평준화 기법)

  • Lee, Tae-Ho;Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.195-196
    • /
    • 2018
  • 본 논문에서는 IIoT(Industrial IoT) 환경에서 사용되는 각 종 센서의 특성을 고려하여 K-means clustering을 이용해 측정 주기에 따른 군집화를 통해 평준화함으로써 센서에서 게이트웨이로의 데이터 전송 시 일어날 수 있는 1:1 독점 통신 현상 및 작업부하를 해결 할 수 있는 기법을 제안한다. 본 논문에서는 해당 기법의 효율을 보다 극대화할 수 있는 분산 게이트웨이 환경에서 실험을 진행하였으며, 해당 실험의 결과에 따르면 분산 게이트웨이 시스템에서 사용되는 게이트웨이들의 작업부하가 현저히 낮아졌고 각 종 센서들이 할당되는 빈도수가 일정하게 나타남으로써 신뢰성과 정확성을 확보에 보다 우수함을 보인다.

  • PDF

A Study on Optimizing the Number of Clusters using External Cluster Relationship Criterion (외부 군집 연관 기준 정보를 이용한 군집수 최적화)

  • Lee, Hyun-Jin;Jee, Tae-Chang
    • Journal of Digital Contents Society
    • /
    • v.12 no.3
    • /
    • pp.339-345
    • /
    • 2011
  • The k-means has been one of the popular, simple and faster clustering algorithms, but the right value of k is unknown. The value of k (the number of clusters) is a very important element because the result of clustering is different depending on it. In this paper, we present a novel algorithm based on an external cluster relationship criterion which is an evaluation metric of clustering result to determine the number of clusters dynamically. Experimental results show that our algorithm is superior to other methods in terms of the accuracy of the number of clusters.

Classification of basin characteristics related to inundation using clustering (군집분석을 이용한 침수관련 유역특성 분류)

  • Lee, Han Seung;Cho, Jae Woong;Kang, Ho seon;Hwang, Jeong Geun;Moon, Hae Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.96-96
    • /
    • 2020
  • In order to establish the risk criteria of inundation due to typhoons or heavy rainfall, research is underway to predict the limit rainfall using basin characteristics, limit rainfall and artificial intelligence algorithms. In order to improve the model performance in estimating the limit rainfall, the learning data are used after the pre-processing. When 50.0% of the entire data was removed as an outlier in the pre-processing process, it was confirmed that the accuracy is over 90%. However, the use rate of learning data is very low, so there is a limitation that various characteristics cannot be considered. Accordingly, in order to predict the limit rainfall reflecting various watershed characteristics by increasing the use rate of learning data, the watersheds with similar characteristics were clustered. The algorithms used for clustering are K-Means, Agglomerative, DBSCAN and Spectral Clustering. The k-Means, DBSCAN and Agglomerative clustering algorithms are clustered at the impervious area ratio, and the Spectral clustering algorithm is clustered in various forms depending on the parameters. If the results of the clustering algorithm are applied to the limit rainfall prediction algorithm, various watershed characteristics will be considered, and at the same time, the performance of predicting the limit rainfall will be improved.

  • PDF

SUPPORT VECTOR MACHINE USING K-MEANS CLUSTERING

  • Lee, S.J.;Park, C.;Jhun, M.;Koo, J.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.175-182
    • /
    • 2007
  • The support vector machine has been successful in many applications because of its flexibility and high accuracy. However, when a training data set is large or imbalanced, the support vector machine may suffer from significant computational problem or loss of accuracy in predicting minority classes. We propose a modified version of the support vector machine using the K-means clustering that exploits the information in class labels during the clustering process. For large data sets, our method can save the computation time by reducing the number of data points without significant loss of accuracy. Moreover, our method can deal with imbalanced data sets effectively by alleviating the influence of dominant class.