DOI QR코드

DOI QR Code

Automatic Dynamic Range Improvement Method using Histogram Modification and K-means Clustering

히스토그램 변형 및 K-means 분류 기반 동적 범위 개선 기법

  • 차수람 (이화여자대학교 전자공학과) ;
  • 김정태 (이화여자대학교 전자공학과) ;
  • 김민석 (하이닉스 반도체)
  • Received : 2011.10.07
  • Accepted : 2011.11.09
  • Published : 2011.11.30

Abstract

In this paper, we propose a novel tone mapping method that implements histogram modification framework on two local regions that are classified using K-means clustering algorithm. In addition, we propose automatic parameter tuning method for histogram modification. The proposed method enhances local details better than the global histogram method. Moreover, the proposed method is fully automatic in the sense that it does not require intervention from human to tune parameters that are involved for computing tone mapping functions. In simulations and experimental studies, the proposed method showed better performance than existing histogram modification method.

본 논문에서는 K-means clustering 알고리즘을 이용하여 영상을 cluster로 나눈 후 각 cluster에 대하여 히스토그램 변형기법을 적용하여 만든 밝기 변환 함수로 영상의 동적 범위를 확장시키는 방법과 히스토그램 변형에 필요한 파라미터를 자동으로 조절하는 방법을 제안한다. 제안하는 방법은 기존의 전역적 히스토그램 변형기법의 한계점인 지역적 밝기 개선이 어렵다는 단점을 극복할 수 있을 뿐 아니라 밝기 변환함수의 파라미터를 자동적으로 조절할 수 있어서 수동 조절 없이 고성능의 화질 개선이 가능하다. 제안하는 방법이 기존 방법에 비해 성능이 우수함은 시뮬레이션 및 실험을 통해 입증하였다.

Keywords

References

  1. L. Meylan and S. Susstrunk, "High dynamic range image rendering with a Retinex-based adaptive filter," IEEE Transactions on Image Processing, vol. 15, no. 9, pp. 2820-2830, 2006. https://doi.org/10.1109/TIP.2006.877312
  2. 김광현, 한영준, " 블록기반 지역 명암대비 개선을 통한 전역 명암대비 향상 기법", 전자공학회 논문지 제 45권 SC편 제 1호, 2008.
  3. P. E. Debevec and J. Malik, "Recovering High Dynamic Range Radiance Maps from Photographs,", ACM SIGGRAPH Conference, pp. 369-378, Aug, 1997.
  4. F. Durand and J. Dorsey, "Fast Bilateral Filtering for the Display of High-Dynamic-Range Images," ACM Transactions on Graphics, vol. 21, pp. 257-266, Jul, 2002.
  5. R. Raskar, A, Ilie and J. Yu, "Image Fusion for Context Enhancement and Video Surrealism," In Proceedings of Non-Photorealistic Animation and Rendering, pp. 85-95, 2005.
  6. D. H Brainard and B. A. Wandell, "Analysis of the retinex theory of color vision," Optical Society of America, vol. 3, no. 10, pp. 1651-1661, Oct. 1986. https://doi.org/10.1364/JOSAA.3.001651
  7. D. J. Jobson, Z. Rahman, G. A. Woodell, "A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes," IEEE Transactions on Image Processing, vol. 6, no. 7, pp. 965-976, Jul. 1997. https://doi.org/10.1109/83.597272
  8. D. H Choi, "Color Image Enhancement based on Single-Scale Retinex with a JND-Based Nonlinear Filter," IEEE International Symposium on Circuits and System, pp. 3948-3951, May 2007.
  9. R. P. Kovaleski and M.. M.. Oliveira, " High-quality brightness enhancement functions for real-time reverse tone mapping," The Visual Computer, pp. 539-547, 2009.
  10. M. Bertalmio, V. Caselles and E. Provenzi, "Issues About Retinex Theory and Contrast Enhancement," International Journal of Computer Vision, vol. 83, pp. 101-119, 2009. https://doi.org/10.1007/s11263-009-0221-5
  11. J. Wang, D, Xu, C.Lang and B. Li, "An Adaptive Tone Mapping Method for Displaying High Dynamic Range Images," Journal of Information Sceience and Engineering, vol. 26, pp. 977-990, 2010.
  12. Y. T. Kim, "Contrast Enhancement Using Brightness Preserving Bi-Histogram Equalization," IEEE Transactions on Consumer Electronics, vol. 43, pp. 1-8, Feb, 1997. https://doi.org/10.1109/30.580378
  13. Y. Wan, Q. Chen and B.M. Zhang, " Image Enhancement Based on Equal Area Dualistic Sub-Image Histogram Equalization Method," IEEE Transactions on Broadcast and Television Receivers, vol. 45, pp. 68-75, Feb, 1999.
  14. S.D. Chen and A. R. Ramli, " Minimum Mean Brightness Error Bi-Histogram Equalization in Contrast Enhancement," IEEE Transactions on Consumer Electronics, vol. 49, pp. 1310-1319, Nov, 2003. https://doi.org/10.1109/TCE.2003.1261234
  15. T. Arici, S. Dikbas and Y. Altunbasak, " A Histogram Modification Framework and Its Application for Image Contrast Enhancement," IEEE Transactions on Image Processing, vol. 18, pp. 1921-1935, 2009. https://doi.org/10.1109/TIP.2009.2021548
  16. S. Shimoyama, M. Igarashi, M. Ikebe and J. Motohisa, "Local Adaptive Tone Mapping with Composite Multiple Gamma Functions," IEEE International Conference on Image Processing, pp. 3153-3156, Nov, 2009.
  17. J. Kim, L. Kim and S. Hwang, "An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization," IEEE Transcations on Circuits and Systems for Video Technology, vol. 11, pp. 475-484, 2001. https://doi.org/10.1109/76.915354
  18. J. W. Lee, R. H. Prak and S. K. Chang, "Local Tone Mapping using K-means Algorithm and Automatic Gamma Setting," IEEE International Conference on Consumer Electronics, pp. 209-217, 2011.
  19. G. Krawczyk, K. Myszkowski and H. Seidel, "Perceptual Effects in Real-time Tone Mapping," SCCG, 2005.
  20. R. C. Gonzalez and R. E. Woods, "Digital Image Processing using MATLAB, Prentice Hall, 2004.
  21. J. B. MacQueen, "Some Methods for calssification and Analysis of Multivariate Observations." Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 281-297.
  22. T. Masato, I. Akira, S. Tetsuaki "High Dynamic Range Rendering for YUV Images with a Constraint on Perceptual Chroma Preservation" IEEE International Conference on Image Processing, pp. 1817-1820, 2009.
  23. A. Beghdali and A. L. Negrate, "Contrast enhancement technique based on local detection of edges," Computer Vision Graphics and Image Processing, vo. 46, no. 2, pp. 162-174, May, 1989. https://doi.org/10.1016/0734-189X(89)90166-7
  24. S.Agaian, K. Panetta and A. Grigoryan, "Transform-based image enhancement algorithms with performance measure," IEEE Transactions on Image Proecssing, vol. 10, no. 3, pp. 367-382, Mar, 2001. https://doi.org/10.1109/83.908502