• 제목/요약/키워드: k-Means clustering

검색결과 1,118건 처리시간 0.025초

Fast Super-Resolution Algorithm Based on Dictionary Size Reduction Using k-Means Clustering

  • Jeong, Shin-Cheol;Song, Byung-Cheol
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.596-602
    • /
    • 2010
  • This paper proposes a computationally efficient learning-based super-resolution algorithm using k-means clustering. Conventional learning-based super-resolution requires a huge dictionary for reliable performance, which brings about a tremendous memory cost as well as a burdensome matching computation. In order to overcome this problem, the proposed algorithm significantly reduces the size of the trained dictionary by properly clustering similar patches at the learning phase. Experimental results show that the proposed algorithm provides superior visual quality to the conventional algorithms, while needing much less computational complexity.

유전자 알고리즘을 이용한 클러스터링 기반 협력필터링 (Clustering-based Collaborative Filtering Using Genetic Algorithms)

  • 이수정
    • 창의정보문화연구
    • /
    • 제4권3호
    • /
    • pp.221-230
    • /
    • 2018
  • 추천 시스템의 주요 방법인 협력 필터링 기술은 실제 상업용 온라인 시스템에서 성공적으로 구현되어 서비스가 제공되고 있다. 그러나, 이 기술은 본질적으로 여러 가지 단점을 내포하는데, 데이터 희소성, 콜드 스타트, 확장성 문제 등이 그 예이다. 확장성 문제를 해결하기 위하여 클러스터링 기법을 활용한 협력 필터링 방법이 연구되어 왔다. 본 연구에서 제안하는 협력 필터링 시스템에서는 가장 널리 활용되는 클러스터링 기법들 중 하나인 K-means 알고리즘의 단점을 개선하고자 유전자 알고리즘을 이용한다. 또한, 기존 연구에서 최적화된 클러스터링 결과를 추구하였던 것과는 달리, 제안 방법은 클러스터링 결과를 활용한 협력 필터링 시스템 성능의 최적화를 목표로 하므로, 실질적으로 시스템의 성능을 향상시킬 수 있다.

Fish Injured Rate Measurement Using Color Image Segmentation Method Based on K-Means Clustering Algorithm and Otsu's Threshold Algorithm

  • Sheng, Dong-Bo;Kim, Sang-Bong;Nguyen, Trong-Hai;Kim, Dae-Hwan;Gao, Tian-Shui;Kim, Hak-Kyeong
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.32-37
    • /
    • 2016
  • This paper proposes two measurement methods for injured rate of fish surface using color image segmentation method based on K-means clustering algorithm and Otsu's threshold algorithm. To do this task, the following steps are done. Firstly, an RGB color image of the fish is obtained by the CCD color camera and then converted from RGB to HSI. Secondly, the S channel is extracted from HSI color space. Thirdly, by applying the K-means clustering algorithm to the HSI color space and applying the Otsu's threshold algorithm to the S channel of HSI color space, the binary images are obtained. Fourthly, morphological processes such as dilation and erosion, etc. are applied to the binary image. Fifthly, to count the number of pixels, the connected-component labeling is adopted and the defined injured rate is gotten by calculating the pixels on the labeled images. Finally, to compare the performances of the proposed two measurement methods based on the K-means clustering algorithm and the Otsu's threshold algorithm, the edge detection of the final binary image after morphological processing is done and matched with the gray image of the original RGB image obtained by CCD camera. The results show that the detected edge of injured part by the K-means clustering algorithm is more close to real injured edge than that by the Otsu' threshold algorithm.

COUNTING OF FLOWERS BASED ON K-MEANS CLUSTERING AND WATERSHED SEGMENTATION

  • PAN ZHAO;BYEONG-CHUN SHIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권2호
    • /
    • pp.146-159
    • /
    • 2023
  • This paper proposes a hybrid algorithm combining K-means clustering and watershed algorithms for flower segmentation and counting. We use the K-means clustering algorithm to obtain the main colors in a complex background according to the cluster centers and then take a color space transformation to extract pixel values for the hue, saturation, and value of flower color. Next, we apply the threshold segmentation technique to segment flowers precisely and obtain the binary image of flowers. Based on this, we take the Euclidean distance transformation to obtain the distance map and apply it to find the local maxima of the connected components. Afterward, the proposed algorithm adaptively determines a minimum distance between each peak and apply it to label connected components using the watershed segmentation with eight-connectivity. On a dataset of 30 images, the test results reveal that the proposed method is more efficient and precise for the counting of overlapped flowers ignoring the degree of overlap, number of overlap, and relatively irregular shape.

K-Means Clustering 알고리즘 기반 클라우드 동적 자원 관리 기법에 관한 연구 (A Study on Dynamic Resource Management Based on K-Means Clustering in Cloud Computing)

  • 곽민기;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.107-110
    • /
    • 2021
  • 글로벌 퍼블릭 클라우드 산업 규모는 매년 폭발적으로 성장하고 있으며 최근 COVID-19 등 비대면 문화 확산에 따라 지속 확장되고 있다. 클라우드 사업자는 유한한 인프라 자원으로 다수의 사용자에게 양질의 IT 서비스 제공을 위해 잉여 자원 할당을 최소화하는 것이 중요하다. 그러나 일반적인 퍼블릭 클라우드 환경에서는 정적 자원 할당 기법을 채택하고 있기 때문에 사용자의 주관적인 판단에 따라 잉여 자원의 발생은 필연적이다. 본 논문에서는 머신 러닝 기법 중 K-Means Clustering 알고리즘을 적용하여 클라우드 동적 자원 관리 기법을 제안한다. K-Means Clustering 기반으로 클라우드에 탑재된 각 Instance 의 자원 사용률 데이터를 분석하고, 분석 결과를 토대로 각 Instance 가 속한 Cluster 에 대하여 자원 최적화 작업을 수행한다. 이를 통해 전체 데이터센터 관점에서 잉여 자원의 발생을 최소화하면서도 SLA 수준 및 서비스 연속성을 보장한다.

K-means 알고리즘을 이용한 계층적 클러스터링에서의 클러스터 계층 깊이 선택 (Selection of Cluster Hierarchy Depth in Hierarchical Clustering using K-Means Algorithm)

  • 이원휘;이신원;정성종;안동언
    • 대한전자공학회논문지SD
    • /
    • 제45권2호
    • /
    • pp.150-156
    • /
    • 2008
  • 정보통신의 기술이 발달하면서 정보의 양이 많아지고 사용자의 질의에 대한 검색 결과 리스트도 많이 추출되므로 빠르고 고품질의 문서 클러스터링 알고리즘이 중요한 역할을 하고 있다. 많은 논문들이 계층적 클러스터링 방법을 이용하여 좋은 성능을 보이지만 시간이 많이 소요된다. 반면 K-means 알고리즘은 시간 복잡도를 줄일 수 있는 방법이다. 본 논문에서는 계층적 클러스터링 시스템인 콘도르(Condor) 시스템에서 K-Means 알고리즘을 이용하여 효율적으로 정보 검색을 하고 검색결과를 계층적으로 볼 수 있도록 구현하였다. 이 시스템은 K-Means Algorithm을 이용하였으며 클러스터 계층 깊이와 초기값을 조절하여 더 나은 성능을 보임을 알 수 있다.

논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법 (A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results)

  • 배경만;황재원;고영중;김종훈
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권3호
    • /
    • pp.214-221
    • /
    • 2010
  • 검색 결과 내 군집화(search-result clustering)는 검색 엔진으로부터 검색된 결과 내에서 비슷한 문서를 자동으로 군집화하는 기법이다. 본 논문에서는 논문 검색 서비스에 전문화된 새로운 결과 내 군집화 기법을 제안한다. 제안하는 시스템은 '범주체계생성기(Category Hierarchy Generation System)'와 '논문군집기(Paper Clustering System)'로 구성되어있다. '범주체계생생기'는 KOSEF의 연구 범주 체계를 이용하여 분야 시소러스라 불리는 범주 체계를 생성하고, K-means 알고리즘을 이용한 단어 군집화 알고리즘을 사용하여 분야 시소러스의 키워드 집합을 확장한다. '논문군집기'는 top-down 방식과 bottom-up 방식을 이용하여 각 논문의 범주를 결정한다. 제안하는 시스템은 논문 검색 서비스와 같은 전문 분야에 대한 검색 서비스에 유용하게 사용될 수 있을 것이다.

클러스터링 기법을 이용한 수용가별 전력 데이터 패턴 분석 (Customer Load Pattern Analysis using Clustering Techniques)

  • 유승형;김홍석;오도은;노재구
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2016
  • Understanding load patterns and customer classification is a basic step in analyzing the behavior of electricity consumers. To achieve that, there have been many researches about clustering customers' daily load data. Nowadays, the deployment of advanced metering infrastructure (AMI) and big-data technologies make it easier to study customers' load data. In this paper, we study load clustering from the view point of yearly and daily load pattern. We compare four clustering methods; K-means clustering, hierarchical clustering (average & Ward's method) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). We also discuss the relationship between clustering results and Korean Standard Industrial Classification that is one of possible labels for customers' load data. We find that hierarchical clustering with Ward's method is suitable for clustering load data and KSIC can be well characterized by daily load pattern, but not quite well by yearly load pattern.

Wavelet을 이용한 K-means clustering algorithm의 초기화

  • 김국환;장우진;이준석
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2006년도 춘계공동학술대회 논문집
    • /
    • pp.305-312
    • /
    • 2006
  • K-means clustering algorithm 에서 주로 이루어지는 랜덤 초기화 (random initialization) 방법은 전역 최적화된 해(global minimum)를 찾아내기에 문제점을 지니고 있다. 즉, 여러 횟수의 알고리듬 반복(iteration)을 실행하더라도 전역 최적화된 해를 찾아내기가 매우 힘들며 주어진 자료의 크기(data size)가 큰 경우에 있어서 이는 거의 불가능하다. 본 논문은 이러한 문제점들을 극복하기 위한 방안으로, wavelet을 이용하여 최적의 초기 군집 중심점(initial clustering center)들을 선택하는 방법을 제시한다. 즉, 웨이블릿을 이용한 효과적인 초기화 (initialization)를 통해서 작은 알고리듬 반복 횟수만으로도 전역 최적화에 도달하는 초기화 방법을 기술한다. 이런 초기화 방법이 군집 알고리즘에 사용될 경우, 온라인상에서 실시간 이루어지는 군집 분석에 큰 도움이 된 수 있다.

  • PDF

가변적 클러스터 개수에 대한 문서군집화 평가방법 (The Evaluation Measure of Text Clustering for the Variable Number of Clusters)

  • 조태호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.233-237
    • /
    • 2006
  • This study proposes an innovative measure for evaluating the performance of text clustering. In using K-means algorithm and Kohonen Networks for text clustering, the number clusters is fixed initially by configuring it as their parameter, while in using single pass algorithm for text clustering, the number of clusters is not predictable. Using labeled documents, the result of text clustering using K-means algorithm or Kohonen Network is able to be evaluated by setting the number of clusters as the number of the given target categories, mapping each cluster to a target category, and using the evaluation measures of text. But in using single pass algorithm, if the number of clusters is different from the number of target categories, such measures are useless for evaluating the result of text clustering. This study proposes an evaluation measure of text clustering based on intra-cluster similarity and inter-cluster similarity, what is called CI (Clustering Index) in this article.

  • PDF