• Title/Summary/Keyword: k-Means 알고리즘

Search Result 773, Processing Time 0.028 seconds

A Study on the Compensation Algorithm based on Error Rate Offset of Distance Measurement (거리측정의 오차비율 오프셋을 적용한 보정알고리즘 연구)

  • Choi, Chang-Yong;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.914-919
    • /
    • 2010
  • It is confirmed that as the distance measurements accuracy of the SDS-TWR(Symmetric Double-Sided Two-Way Ranging) based on CSS(Chirp Spread Spectrum) is considerably degraded due to frequency interference and it causes to severe errors in the localization applications. In this paper, the compensation algorithm based on error rate offset of distance measurement ($CA_d$) is proposed for the purpose to reduce the ranging errors due to by the SDS-TWR ranging problems. The $CA_d$ measures the distance values between two nodes by means of 1m interval about 1~25m distances in the SDS-TWR, and compensates the distance values using the parameters related to the distance compensation. From the experiments, it is analyzed that the $CA_d$. have reduced the distance error to average 95cm and maximum 526cm, and the distance error by the $CA_d$ was below about 60cm in the 25m distances. In particular, the performance of the distance measurements accuracy by the $CA_d$ is very high in LOS(Line Of Sight) environments.

Research on Characterizing Urban Color Analysis based on Tourists-Shared Photos and Machine Learning - Focused on Dali City, China - (관광객 공유한 사진 및 머신 러닝을 활용한 도시 색채 특성 분석 연구 - 중국 대리시를 대상으로 -)

  • Yin, Xiaoyan;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.39-50
    • /
    • 2024
  • Color is an essential visual element that has a significant impact on the formation of a city's image and people's perceptions. Quantitative analysis of color in urban environments is a complex process that has been difficult to implement in the past. However, with recent rapid advances in Machine Learning, it has become possible to analyze city colors using photos shared by tourists. This study selected Dali City, a popular tourist destination in China, as a case study. Photos of Dali City shared by tourists were collected, and a method to measure large-scale city colors was explored by combining machine learning techniques. Specifically, the DeepLabv3+ model was first applied to perform a semantic segmentation of tourist sharing photos based on the ADE20k dataset, thereby separating artificial elements in the photos. Next, the K-means clustering algorithm was used to extract colors from the artificial elements in Dali City, and an adjacency matrix was constructed to analyze the correlations between the dominant colors. The research results indicate that the main color of the artificial elements in Dali City has the highest percentage of orange-grey. Furthermore, gray tones are often used in combination with other colors. The results indicated that local ethnic and Buddhist cultures influence the color characteristics of artificial elements in Dali City. This research provides a new method of color analysis, and the results not only help Dali City to shape an urban color image that meets the expectations of tourists but also provide reference materials for future urban color planning in Dali City.

Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function (사다리꼴형 함수의 입력 공간분할에 의한 가스로공정의 특성분석)

  • Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2014
  • Fuzzy modeling is generally using the given data and the fuzzy rules are established by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is presented by selection of the input variables, the number of space division and membership functions and in this paper the consequent part of the fuzzy rule is identified by polynomial functions in the form of linear inference and modified quadratic. Parameter identification in the premise part devides input space Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. In this paper, membership function of the premise part is dividing input space by using trapezoid-type membership function and by using gas furnace process which is widely used in nonlinear process we evaluate the performance.

Call Admission Control in ATM by Neural Networks and Fuzzy Pattern Estimator (신경망과 퍼지 패턴 추정기를 이용한 ATM의 호 수락 제어)

  • Lee, Jin-Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2188-2195
    • /
    • 1999
  • This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neuralnet, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Means) arithmetics, to decide whether a requested call not to be trained in learning phase to be connected or not. The system generates the estimated traffic pattern for the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmetics. The input to the NN is the vector consisted of traffic parameters which are the means and variances of the number of cells arriving in decision as to whether to accept or reject a new call depends on whether the NN is used for decision threshold(+0.5). This method is a new technique for call admission control using the membership values as traffic parameter which declared to CAC at the call set up stage, and this is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simulations, it is founded the performance of the suggested method outperforms compared to the conventional NN method.

  • PDF

Granular-based Radial Basis Function Neural Network (입자화기반 RBF 뉴럴네트워크)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.241-242
    • /
    • 2008
  • 본 논문에서는 fuzzy granular computing 방법 중의 하나인 context-based FCM을 이용하여 granular-based radial basis function neural network에 대한 기본적인 개면과 그들의 포괄적인 설계 구조에 대해서 자세히 기술한다. 제안된 모델에 기본이 되는 설계 도구는 context-based fuzzy c-means (C-FCM)로 알려진 fuzzy clustering에 초점이 맞춰져 있으며, 이는 주어진 데이터의 특징에 맞게 공간을 분할함으로써 효율적으로 모델을 구축할 수가 있다. 제안된 모델의 설계 공정은 1) Context fuzzy set에 대한 정의와 설계, 2) Context-based fuzzy clustering에 대한 모델의 적용과 이에 따른 모델 구축의 효율성, 3) 입력과 출력공간에서의 연결된 information granule에 대한 parameter(다항식의 계수들)에 대한 최적화와 같은 단계로 구성되어 있다. Information granule에 대한 parameter들은 성능지수를 최소화하기 위해 Least square method에 의해서 보정된다. 본 논문에서는 모델을 설계함에 있어서 체계적인 설계 알고리즘을 포괄적으로 설명하고 있으며 더 나아가 제안된 모델의 성능을 다른 표준적인 모델들과 대조함으로써 제안된 모델의 우수성을 나타내고자 한다.

  • PDF

Unified Design Method for Toroidal Transformer and its Optimal Algorithm (토로이드형 변압기의 일관성있는 설계법과 그 최적화 알고리즘)

  • 김주홍;이광직
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.3
    • /
    • pp.78-83
    • /
    • 1991
  • This study proposes a unified method to design toroidal transformer and its optimal design algorithm. This unified design method was derived from the fundamental equation of power on the basis of electromagnetic energy of a core and the definition of three parameters(K1, K2, KW) that influence the form of a core and the ratio of a core and coil. Accordingly this design method condenses the whole data for design of toroidal transformer to a standard variable which is the inner diameter of a core. The minimal cost, weight and volume values of the transformer were computed by means of the algorithm to search the optimal values of the parameters. Furthermore, through the CAD, the efficiency of this unified design method and optimal algorithm proposed in this paper was confirmed.

  • PDF

An Application of Generic Algorithms to the Distribution System Loss Minimization Re -cofiguration Problem (배전손실 최소화 문제에 있어서 유전알고리즘의 수속특성에 관한 연구)

  • Choi, Dai-Seub;Jung, Soo-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.580-582
    • /
    • 2005
  • This paper presents a new method which applies a genetic algorithm(GA) for determining which sectionalizing switch to operate in order to solve the distribution system loss minimization re-configuration problem. The distribution system loss minimization re-configuration problem is in essence a 0-1 planning problem which means that for typical system scales the number of combinations requiring searches becomes extremely large. In order to deal with this problem, a new a roach which applies a GA was presented. Briefly, GA are a type of random number search method, however, they incorporate a multi-point search feature. Further, every point is not is not separately and respectively renewed, therefore, if parallel processing is applied, we can expect a fast solution algorithm to result.

  • PDF

A Study on the Distributed Control Modeling of Elevator (엘리베이터의 분산 제어 모델링에 관한 연구)

  • Cho, Myug-Hyun;Lee, Myung-Un
    • 전자공학회논문지 IE
    • /
    • v.44 no.4
    • /
    • pp.35-40
    • /
    • 2007
  • Recently, buildings are constructed increasingly higher and even more people are using elevators every day. Therefore, more efficient means of vortical transportation are required. Most of high-rise buildings is equipped with elevators. Unlike one elevator system, a multi-elevator system requires a function, which can distribute multiple elevators effectively. This paper examines a multi-elevator system, which has been modeling mathematically, in order to reduce waiting time and use elevators more effectively.

Design of Fuzzy PID Controller Using GAs and Estimation Algorithm (유전자 알고리즘과 Estimation기법을 이용한 퍼지 제어기 설계)

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.416-419
    • /
    • 2001
  • In this paper a new approach to estimate scaling factors of fuzzy controllers such as the fuzzy PID controller and the fuzzy PD controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors[1]. The desist procedure dwells on the use of evolutionary computing(a genetic algorithm) and estimation algorithm for dynamic systems (the inverted pendulum). The tuning of the scaling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as Neuro-Fuzzy model, and regression polynomial [7]. This method can be applied to the nonlinear system as the inverted pendulum. Numerical studies are presented and a detailed comparative analysis is also included.

  • PDF

Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm (HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF