• 제목/요약/키워드: k-Bessel functions

검색결과 73건 처리시간 0.02초

ON THE GENERALIZED MODIFIED k-BESSEL FUNCTIONS OF THE FIRST KIND

  • Nisar, Kottakkaran Sooppy
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.909-914
    • /
    • 2017
  • The recent research investigates the generalization of Bessel function in different forms as its usefulness in various fields of applied sciences. In this paper, we introduce a new modified form of k-Bessel functions called the generalized modified k-Bessel functions and established some of its properties.

CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION

  • Kim, Yongsup
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.523-532
    • /
    • 2019
  • Integrals involving a finite product of the generalized Bessel functions have recently been studied by Choi et al. [2, 3]. Motivated by these results, we establish certain unified integral formulas involving a finite product of the generalized k-Bessel functions. Also, we consider some integral formulas of the (p, q)-extended Bessel functions $J_{{\nu},p,q}(z)$ and the Delerue hyper-Bessel function which are proved in terms of (p, q)-extended generalized hypergeometric functions, and the generalized Wright hypergeometric functions, respectively.

Representation Theory of the Lie Group T3 and Three Index Bessel Functions

  • Pathan, Mahmood Ahmad;Shahwan, Mohannad Jamal Said
    • Kyungpook Mathematical Journal
    • /
    • 제53권1호
    • /
    • pp.143-148
    • /
    • 2013
  • The theory of generalized Bessel functions is reformulated within the framework of an operational formalism using the multiplier representation of the Lie group $T_3$ as suggested by Miller. This point of view provides more efficient tools which allow the derivation of generating functions of generalized Bessel functions. A few special cases of interest are also discussed.

CERTAIN UNIFIED INTEGRALS INVOLVING A PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND

  • Choi, Junesang;Agarwal, Praveen
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.667-677
    • /
    • 2013
  • A remarkably large number of integrals involving a product of certain combinations of Bessel functions of several kinds as well as Bessel functions, themselves, have been investigated by many authors. Motivated the works of both Garg and Mittal and Ali, very recently, Choi and Agarwal gave two interesting unified integrals involving the Bessel function of the first kind $J_{\nu}(z)$. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present two generalized integral formulas involving a product of Bessel functions of the first kind, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. Some interesting special cases and (potential) usefulness of our main results are also considered and remarked, respectively.

CERTAIN NEW INTEGRAL FORMULAS INVOLVING THE GENERALIZED BESSEL FUNCTIONS

  • Choi, Junesang;Agarwal, Praveen;Mathur, Sudha;Purohit, Sunil Dutt
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.995-1003
    • /
    • 2014
  • A remarkably large number of integral formulas involving a variety of special functions have been developed by many authors. Also many integral formulas involving various Bessel functions have been presented. Very recently, Choi and Agarwal derived two generalized integral formulas associated with the Bessel function $J_{\nu}(z)$ of the first kind, which are expressed in terms of the generalized (Wright) hypergeometric functions. In the present sequel to Choi and Agarwal's work, here, in this paper, we establish two new integral formulas involving the generalized Bessel functions, which are also expressed in terms of the generalized (Wright) hypergeometric functions. Some interesting special cases of our two main results are presented. We also point out that the results presented here, being of general character, are easily reducible to yield many diverse new and known integral formulas involving simpler functions.

ON SOME DIFFERENTIAL SUBORDINATION INVOLVING THE BESSEL-STRUVE KERNEL FUNCTION

  • Al-Dhuain, Mohammed;Mondal, Saiful R.
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.445-458
    • /
    • 2018
  • In this article we study the inclusion properties of the Bessel-Struve kernel functions in the Janowski class. In particular, we find the conditions for which the Bessel-Struve kernel functions maps the unit disk to right half plane. Some open problems with this aspect are also given. The third order differential subordination involving the Bessel-Struve kernel is also considered. The results are derived by defining suitable classes of admissible functions. One of the recurrence relation of the Bessel-Struve kernel play an important role to derive the main results.

Certain Geometric Properties of an Integral Operator Involving Bessel Functions

  • Selvakumaran, Kuppathai Appasamy;Szasz, Robert
    • Kyungpook Mathematical Journal
    • /
    • 제58권3호
    • /
    • pp.507-517
    • /
    • 2018
  • In this article, we introduce a new integral operator involving normalized Bessel functions of the first kind and we obtain a set of sufficient conditions for univalence. Our results contain some interesting corollaries as special cases. Further, as particular cases, we improve some of the univalence conditions proved in [2].

BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS

  • Aktas, Ibrahim;Orhan, Halit
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.355-369
    • /
    • 2020
  • In the present investigation, by applying two different normalizations of the Jackson's second and third q-Bessel functions tight lower and upper bounds for the radii of convexity of the same functions are obtained. In addition, it was shown that these radii obtained are solutions of some transcendental equations. The known Euler-Rayleigh inequalities are intensively used in the proof of main results. Also, the Laguerre-Pólya class of real entire functions plays an important role in this work.

DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR GENERALIZED BESSEL FUNCTIONS

  • Al-Kharsani, Huda A.;Baricz, Arpad;Nisar, Kottakkaran S.
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.127-138
    • /
    • 2016
  • Differential subordination and superordination preserving properties for univalent functions in the open unit disk with an operator involving generalized Bessel functions are derived. Some particular cases involving trigonometric functions of our main results are also pointed out.