• Title/Summary/Keyword: k-$\varepsilon$model

Search Result 750, Processing Time 0.026 seconds

Numerical Analysis of Moisture Ventilation in the Dry Room (Dry room내 수분환기에 대한 수치적 연구)

  • 이관수;임광옥;정영식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.908-916
    • /
    • 2000
  • In this paper, the characteristics of moisture ventilation in the lithium ion battery manufacturing dry room are studied numerically using standard $k-\varepsilon$ turbulence model. Both the steady-state and the unsteady behaviors of moisture ventilation are analyzed by considering local and uniform moisture generation. In order to evaluate the characteristics of moisture ventilation, three scales of ventilation efficiency and characteristic ventilation time are presented from the numerical results. It was shown that moisture distribution was dependent strongly on the flow field. The characteristics of moisture ventilation were improved by 20% and 40% in terms of the 1st scale of ventilation efficiency (SVE1) and the 2nd scale of ventilation efficiency (SVE2), respectively, through the modifications of design variables such as the addition of inlets, outlets and partition. A significant improvement in the characteristic ventilation time and the moisture exhaust efficiency was also made by these modifications.

  • PDF

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3차원 유동에 대한 수치해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Byun, Sung-Joon;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

Aerodynamic Performance of Gurney Flap (Gurney 플?의 공기역학적 성능)

  • Yoo, Neung-Soo;Jung, Sung-Woong
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.335-341
    • /
    • 1998
  • A numerical investigation was performed to determine the effect of a Gurney flap on a NACA 23012 airfoil. A Navier-Stokes code, RAMPANT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case for our computational method, computations were performed for NACA 4412 airfoil which compared with Wedcock's experimental data. Gurney flap sizes of 0.5, 1.0, 1.5, and 2% of the airfoil chord were studied. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increased the effective camber of the airfoil. But Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. Also, it turned out that 0.5% chord size of flap was best one among them.

  • PDF

Microwave Dielectric Characterization of Binary Mixtures of 3-Nitrotoluene with Dimethylacetamide, Dimethylformamide and Dimethylsulphoxide

  • Chaudhari, Ajay;Chaudhari, H.C.;Mehrotra, S.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1403-1407
    • /
    • 2004
  • Dielectric relaxation measurements on 3-nitrotoluene (3-NT) mixture of dimethylacetamide (DMA), dimethylformamide (DMF) and dimethysulphoxide (DMSO) have been carried out across the entire concentration range using Time domain reflectometry technique at 15, 25, 35 and $45^{\circ}C$ over the frequency range from 10 MHz to 20 GHz. For all the mixtures, only one dielectric loss peak was observed in this frequency range and the relaxation in these mixtures can be well described by a single relaxation time using Debye model. Bilinear calibration method is used to obtain complex permittivity ${\varepsilon}^{*}({\omega})$ from complex reflection coefficient ${\rho}^{*}({\omega})$ over frequency range 10 MHz to 20 GHz. The excess permittivity, excess inverse relaxation time, Kirkwood correlation factor, molar energy of activation are also calculated for these mixtures to study the solute-solvent interaction.

Numerical Investigation for Drag Prediction of an Axisymmetric Underwater Vehicle with Bluff Afterbody (기저부를 갖는 축대칭 수중운동체의 저항예측에 관한 수치적 연구)

  • Kim, Min-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.372-377
    • /
    • 2010
  • The objective of this study is to predict the drag of an axisymmetric underwater vehicle with bluff afterbody using CFD. FLUENT, commercial CFD code, is used to simulate high Reynolds number turbulent flows around the vehicle. The computed drag coefficients are compared to available experimental data at various Reynolds numbers. Four widely used two-equation turbulence models are investigated to evaluate their performance of predicting the anisotropic turbulence in a recirculating flow region, which is caused by flow separation arising from the base of the vehicle. The simulations with Realizable ${\kappa}-{\varepsilon}$ and ${\kappa}-{\omega}$ SST turbulence models predict the anisotropic turbulent flows comparatively well and the drag prediction results with those models show good agreements with the experimental data.

Computational Analysis of EFP Design (EFP 설계의 전산 해석)

  • 최서원;강호철;홍종태;이상길
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.110-116
    • /
    • 1999
  • Supersonic flows over an EFP(explosively formed projectile) have been calculated by a high-order conservation law scheme and two-layer $$textsc{k}$-{\varepsilon}$ model on hybrid viscous unstructured mesh. To verify the accuracy and robustness of the developed code, two basic flows about airfoils are computed and results are compared with existing experimental data and computational results. The comparisons confirm the validity of the code and justify our use for such a highly supersonic and viscous flow over a blunt body. Complex flow features of supersonic flows over an EFP are clearly captured and show agreements with the flow visualization. From the interaction of oblique shocks near the surface of flare, flow structures, that were not identified by previous experimental results, are discovered as a result of present computation.

  • PDF

Analysis of Intramolecular Electron Transfer in A Mixed-Valence Cu(Ⅰ)-Cu(Ⅱ) Complex Using the PKS Model

  • So Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.385-388
    • /
    • 1992
  • The transition probabilities for the thermal intramolecular electron transfer and the optical intervalence transfer band for a symmetric mixed-valence Cu(I)-Cu(II) compound were used to extract the PKS parameters $\varepsilon$ = -1.15, ${\lambda}$ = 2.839, and ${\nu}g$- = 923 $cm^{-1}$. These parameters determine the potential energy surfaces and vibronic energy levels. Three pairs of vibrational levels are below the top of the energy barrier in the lower potential surface. The contribution of each vibrational state to the intramolecular electron transfer was calculated. It is shown that the three pairs of vibrational states below the top of the barrier are responsible for most of the electron transfer at 261-306 K. So the intramolecular electron transfer in this system is a tunneling process. The transition probability exhibits the usual high-temperature Arrhenius behavior, but at lower temperature falls off to a temperature-independent value as tunneling from the lowest levels becomes the limiting process.

Flow Uniformity Analysis of DOC-DPF System using CFD (CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석)

  • Kim, Taehoon;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

A Numerical Study of the Flow Field in the Combustion Chamber of the I.C Engine with Offset Valve (편심 밸브를 갖는 내연기관의 연소실 내부 유동장에 대한 수치적 연구)

  • 양희천;최영기;유홍선;고상근;허선무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1552-1565
    • /
    • 1992
  • Three dimensional numerical calculations were carried out for two different combustion chambers with the offset valve in order to investigate the swirl and the squish effects on the flow fields. The modified K-.epsilon. turbulence model considering the change of the density under the condition of the rapid compression and expansion of the pistion was used. During the compression process, it was found that the squish flow which controls the subsequent combustion process was produced due to the piston bowl in the bowl piston type combustion chambers but not for the flat piston type. The swirl velocity close to the solid body rotation was maintained in the flat piston type combustion chambers, but for the bowl piston type a resulting from the change of the solid body rotation was generated in the radial-circumferential plane. For the swirl ratio effect, as the swirl ratio increases, it was found that a large and strong vortex was generated in the radial-circumferential plane of bowl piston type combustion chambers because of the strong inward flows from the combustion chamber wall. These computational results were compared with the results of LDA measurement.

Study of an improved and novel venturi scrubber configuration for removal of radioactive gases from NPP containment air during severe accident

  • Farooq, Mujahid;Ahmed, Ammar;Qureshi, Kamran;Shah, Ajmal;Waheed, Khalid;Siddique, Waseem;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3310-3316
    • /
    • 2022
  • Owing to the rising concerns about the safety of nuclear power plants (NPP), it is essential to study the venturi scrubber in detail, which is a key component of the filtered containment venting system (FCVS). FCVS alleviates the pressurein containment byfiltering and venting out the contaminated air. Themain objective of this research was to perform a CFD investigation of different configurations of a circular, non-submerged, self-priming venturi scrubber to estimate and improve the performance in the removal of elemental iodine from the air. For benchmarking, a mass transfer model which is based on two-film theory was selected and validated by experimental data where an alkaline solution was considered as the scrubbing solution. This mass transfer model was modified and implemented on a unique formation of two self-priming venturi scrubbers in series. Euler-Euler method was used for two-phase modeling and the realizable K-ε model was used for capturing the turbulence. The obtained results showed a remarkable improvement in the removal of radioactive iodine from the air using a series combination of venturi scrubbers. The removal efficiency was improved at every single data point.