• Title/Summary/Keyword: k/n (G) system

Search Result 1,226, Processing Time 0.026 seconds

Repairable k-out-n system work model analysis from time response

  • Fang, Yongfeng;Tao, Webliang;Tee, Kong Fah
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.775-783
    • /
    • 2013
  • A novel reliability-based work model of k/n (G) system has been developed. Unit failure probability is given based on the load and strength distributions and according to the stress-strength interference theory. Then a dynamic reliability prediction model of repairable k/n (G) system is established using probabilistic differential equations. The resulting differential equations are solved and the value of k can be determined precisely. The number of work unit k in repairable k/n (G) system is obtained precisely. The reliability of whole life cycle of repairable k/n (G) system can be predicted and guaranteed in the design period. Finally, it is illustrated that the proposed model is feasible and gives reasonable prediction.

Average Length and Bounds on the Busy Period for a k-out-of-n : G System with Non-identical Components

  • Jung, Kyung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.2
    • /
    • pp.123-130
    • /
    • 1992
  • The model of k-out-of n : G repairable system with identical components is extended to a repairable system with n different components. The objective is to analytically derive the mean time of the busy period for a k-out-of-n : G system with unrestricted repair. Then, the lower and upper bounds on the average time of the busy period of the n-component system with restricted repair are also shown.

  • PDF

Reliability analysis of repairable k-out-n system from time response under several times stochastic shocks

  • Fang, Yongfeng;Tao, Wenliang;Tee, Kong Fah
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.559-567
    • /
    • 2014
  • The model of unit dynamic reliability of repairable k/n (G) system with unit strength degradation under repeated random shocks has been developed according to the stress-strength interference theory. The unit failure number is obtained based on the unit failure probability which can be computed from the unit dynamic reliability. Then, the transfer probability function of the repairable k/n (G) system is given by its Markov property. Once the transfer probability function has been obtained, the probability density matrix and the steady-state probabilities of the system can be retrieved. Finally, the dynamic reliability of the repairable k/n (G) system is obtained by solving the differential equations. It is illustrated that the proposed method is practicable, feasible and gives reasonable prediction which conforms to the engineering practice.

A diffusion approximation for time-dependent queue size distribution for M/G/m/N system

  • Park, Bong-Dae;Shin, Yang-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.211-236
    • /
    • 1995
  • The purpose of this paper is to provide a transient diffusion approximation of queue size distribution for M/G/m/N system. The M/G/m/N system can be expressed as follows. The interarrival times of customers are exponential and the service times of customers have general distribution. The system can hold at most a total of N customers (including the customers in service) and any further arriving customers will be refused entry to the system and will depart immediately without service. The queueing system with finite capacity is more practical model than queueing system with infinite capacity. For example, in the design of a computer system one of the important problems is how much capacity is required for a buffer memory. It its capacity is too little, then overflow of customers (jobs) occurs frequently in heavy traffic and the performance of system deteriorates rapidly. On the other hand, if its capacity is too large, then most buffer memories remain unused.

  • PDF

BINDING NUMBER AND HAMILTONIAN (g, f)-FACTORS IN GRAPHS

  • Cai, Jiansheng;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.383-388
    • /
    • 2007
  • A (g, f)-factor F of a graph G is Called a Hamiltonian (g, f)-factor if F contains a Hamiltonian cycle. The binding number of G is defined by $bind(G)\;=\;{min}\;\{\;{\frac{{\mid}N_GX{\mid}}{{\mid}X{\mid}}}\;{\mid}\;{\emptyset}\;{\neq}\;X\;{\subset}\;V(G)},\;{N_G(X)\;{\neq}\;V(G)}\;\}$. Let G be a connected graph, and let a and b be integers such that $4\;{\leq}\;a\;<\;b$. Let g, f be positive integer-valued functions defined on V(G) such that $a\;{\leq}\;g(x)\;<\;f(x)\;{\leq}\;b$ for every $x\;{\in}\;V(G)$. In this paper, it is proved that if $bind(G)\;{\geq}\;{\frac{(a+b-5)(n-1)}{(a-2)n-3(a+b-5)},}\;{\nu}(G)\;{\geq}\;{\frac{(a+b-5)^2}{a-2}}$ and for any nonempty independent subset X of V(G), ${\mid}\;N_{G}(X)\;{\mid}\;{\geq}\;{\frac{(b-3)n+(2a+2b-9){\mid}X{\mid}}{a+b-5}}$, then G has a Hamiltonian (g, f)-factor.

NEIGHBORHOOD CONDITION AND FRACTIONAL f-FACTORS IN GRAPHS

  • Liu, Hongxia;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1157-1163
    • /
    • 2009
  • Let G be a graph with vertex set V(G) and let f be a nonnegative integer-valued function defined on V(G). A spanning subgraph F of G is called a fractional f-factor if $d^h_G$(x)=f(x) for all x $\in$ for all x $\in$ V (G), where $d^h_G$ (x) = ${\Sigma}_{e{\in}E_x}$ h(e) is the fractional degree of x $\in$ V(F) with $E_x$ = {e : e = xy $\in$ E|G|}. In this paper it is proved that if ${\delta}(G){\geq}{\frac{b^2(k-1)}{a}},\;n>\frac{(a+b)(k(a+b)-2)}{a}$ and $|N_G(x_1){\cup}N_G(x_2){\cup}{\cdots}{\cup}N_G(x_k)|{\geq}\frac{bn}{a+b}$ for any independent subset ${x_1,x_2,...,x_k}$ of V(G), then G has a fractional f-factor. Where k $\geq$ 2 be a positive integer not larger than the independence number of G, a and b are integers such that 1 $\leq$ a $\leq$ f(x) $\leq$ b for every x $\in$ V(G). Furthermore, we show that the result is best possible in some sense.

  • PDF

MULTIPLICATIVE GROUP IN A FINITE RING

  • Han, Juncheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.213-221
    • /
    • 1993
  • In this paper, we will show that the multiplicative group G in a finite ring R with identity 1 has a (B, N)-pair satisfying the following conditions; (1) G=BNB where B and N are subgroups of G. (2) B.cap.N is a normal subgroup of N and W = N/(B.cap.N), is generated by a set S = { $s_{1}$, $s_{2}$, .., $s_{k}$} where $s_{i}$.mem.N/(B.cap.N), $s_{i}$$^{2}$.iden.1 and $s_{i}$.neq.1. (3) For any s.mem.S and w.mem.W, we have sBw.contnd.BwB.cup.BswB. (4) We have sBs not .subeq. B for any s.mem.S. When G, B, N and S satisfy the above conditions, we say that the quadruple (G, B, N, S) is a Tits system. The group W is called the Weyl gorup of the Tits system.ystem.m.

  • PDF

ON CONSTANT-SIGN SOLUTIONS OF A SYSTEM OF DISCRETE EQUATIONS

  • Agarwal, Ravi-P.;O'Regan, Donal;Wong, Patricia-J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.1-37
    • /
    • 2004
  • We consider the following system of discrete equations $u_i(\kappa)\;=\;{\Sigma{N}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;{\cdots}\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;,\;T\},\;1\;{\leq}\;i\;{\leq}\;n\;where\;T\;{\geq}\;N\;>\;0,\;1\;{\leq}i\;{\leq}\;n$. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on $\{0,\;1,\;{\cdots}\;\}\;u_i(\kappa)\;=\;{\Sigma{\infty}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;\cdots\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;\},\;1\;{\leq}\;i\;{\leq}\;n$ for which the existence of constant-sign solutions is investigated.

Derivations of Upper and Lower Bounds of the Expected Busy Periods for the Min(N, D) and Max(N, D) Operating Policies in a Controllable M/G/1 Queueing Model (조정가능한 M/G/1 대기모형에 Min(N, D)와 Max(N, D) 운용방침이 적용될 때 busy period 기대값의 상한과 하한 유도)

  • Rhee, Hahn-Kyou;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.71-77
    • /
    • 2009
  • Using the results of the expected busy periods for the dyadic Min(N, D) and Max(N, D) operating policies in a controllable M/G/1 queueing model, an important relation between them is derived. The derived relation represents the complementary property between two operating policies. This implies that it could be possible to obtained desired system characteristics for one of the two operating policies from the corresponding known system characteristics for the other policy. Then, upper and lower bounds of expected busy periods for both dyadic operating policies are also derived.

Reliability of a Consecutive-k-out-of n : G System with Common-Cause Outage

  • Kim, Ho-Yong;Jung, Kyung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.17 no.3
    • /
    • pp.181-193
    • /
    • 1992
  • This paper shows the model of a consecutive-k-out-of-n :G system with common-cause outages. The objective is to analytically derive the mean operating time between failures for a non-repairable component system. The average failure time of a system and the system availability are also considered. Then, the model is extended to a system with repairable components and unrestricted repair, in which service times are exponentially distributed.

  • PDF