• Title/Summary/Keyword: junction structure

Search Result 485, Processing Time 0.029 seconds

Sensing scheme of current-mode MRAM (전류 방식 MRAM의 데이터 감지 기법)

  • Kim Bumsoo;Cho Chung-Hyung;Hwang Won Seok;Ko Ju Hyun;Kim Dong Myong;Min Kyeong-Sik;Kim Daejeong
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.419-422
    • /
    • 2004
  • A sensing scheme for current-mode magneto-resistance random access memory (MRAM) with a 1T1MTJ cell structure is proposed. Magnetic tunnel junction (MTJ) resistance, which is HIGH or LOW, is converted to different cell currents during READ operation. The cell current is then amplified to be evaluated by the reference cell current. In this scheme, conventional bit line sense amplifiers are not required and the operation is less sensitive to voltage noise than that of voltage-mode circuit is. It has been confirmed with HSPICE simulations using a 0.35-${\mu}m$ 2-poly 4-metal CMOS technology.

  • PDF

Light Trapping in Silicon Based Tandem Solar Cell: A Brief Review

  • Iftiquar, Sk Md;Park, Hyeongsik;Dao, Vinh Ai;Pham, Duy Phong;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Among the various types of solar cells, silicon based two terminal tandem solar cell is one of the most popular one. It is designed to split the absorption of incident AM1.5 solar radiation among two of its component cells, thereby widening the wavelength range of external quantum efficiency (EQE) spectra of the device, in comparison to that of a single junction solar cell. In order to improve the EQE spectra further and raise short circuit current density ($J_{sc}$) an optimization of the tradeoff between the top and bottom cell is needed. In an optimized cell structure, the $J_{sc}$ and hence efficiency of the device can further be enhanced with the help of light trapping scheme. This can be achieved by texturing front and back surface as well as a back reflector of the device. In this brief review we highlight the development of light trapping in the silicon based tandem solar cell.

Investigation of Firing Conditions for Optimizing Aluminum-Doped p+-layer of Crystalline Silicon Solar Cells

  • Lee, Sang Hee;Lee, Doo Won;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2016
  • Screen printing technique followed by firing has commonly been used as metallization for both laboratory and industrial based solar cells. In the solar cell industry, the firing process is usually conducted in a belt furnace and needs to be optimized for fabricating high efficiency solar cells. The printed-Al layer on the silicon is rapidly heated at over $800^{\circ}C$ which forms a layer of back surface field (BSF) between Si-Al interfaces. The BSF layer forms $p-p^+$ structure on the rear side of cells and lower rear surface recombination velocity (SRV). To have low SRV, deep $p^+$ layer and uniform junction formation are required. In this experiment, firing process was carried out by using conventional tube furnace with $N_2$ gas atmosphere to optimize $V_{oc}$ of laboratory cells. To measure the thickness of BSF layer, selective etching was conducted by using a solution composed of hydrogen fluoride, nitric acid and acetic acid. The $V_{oc}$ and pseudo efficiency were measured by Suns-$V_{oc}$ to compare cell properties with varied firing condition.

Pushover analysis of prefabricated structures with various partially fixity rates

  • Akkose, Mehmet;Sunca, Fezayil;Turkay, Alperen
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Prefabricated structures are constructed by bolted connections of separated members. The design and analysis of these structures are generally performed by defining fully hinges for the connection of separated members at the joint of junction. In practice, these connections are not fully hinged. Therefore, the assumption of semi-rigid connections (restrained or partially fixity) instead of fully hinge connections is a more realistic approach for bolted connections used in the prefabricated elements. The aim of this study is to investigate the effects of semi-rigid connections on seismic performance of prefabricated structures. Nonlinear static analysis (pushover analysis) of a selected RC prefabricated structure is performed with SAP2000 structural analysis program by considering various partially fixity percentages for bolted connections. The target values of roof displacements obtained from the analyses according to ATC-40, FEMA-356, FEMA-440, and TEC-2007 codes are compared each other. The numerical results are given in tables and figures comparatively and discussed. The results show that the effects of semi-rigid connections should be considered in design and analysis of the prefabricated structures.

Optimal P-Well Design for ESD Protection Performance Improvement of NESCR (N-type Embedded SCR) device (NESCR 소자에서 정전기 보호 성능 향상을 위한 최적의 P-Well 구조 설계)

  • Yang, Jun-Won;Seo, Yong-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2014
  • An electrostatic discharge (ESD) protection device, so called, N-type embedded silicon controlled rectifier (NESCR), was analyzed for high voltage operating I/O applications. A conventional NESCR standard device shows typical SCR-like characteristics with extremely low snapback holding voltage, which may cause latch-up problem during normal operation. However, our modified NESCR_CPS_PPW device with proper junction/channel engineering such as counter pocket source (CPS) and partial P-well structure demonstrates highly latch-up immune current-voltage characteristics with high snapback holding voltage and on-resistance.

Electrical Properties of Tungsten Oxide Interfacial Layer for Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.196.2-196.2
    • /
    • 2015
  • There are various issues fabricating the successful and efficient solar cell structures. One of the most important issues is band alignment technique. The solar cells make the carrier in their active region over the p-n junction. Then, electrons and holes diffuse by minority carrier diffusion length. After they reach the edge of solar cells, there exist large energy barrier unless the good electrode are chosen. Many various conductor with different work functions can be selected to solve this energy barrier problem to efficiently extract carriers. Tungsten oxide has large band gap known as approximately 3.4 eV, and usually this material shows n-type property with reported work function of 6.65 eV. They are extremely high work function and trap level by oxygen vacancy cause them to become the hole extraction layer for optical devices like solar cells. In this study, we deposited tungsten oxide thin films by sputtering technique with various sputtering conditions. Their electrical contact properties were characterized with transmission line model pattern. The structure of tungsten oxide thin films were measured by x-ray diffraction. With x-ray photoelectron spectroscopy, the content of oxygen was investigated, and their defect states were examined by spectroscopic ellipsometry, UV-Vis spectrophotometer, and photoluminescence measurements.

  • PDF

Design of a 94-GHz Single Balanced Mixer Using Planar Schottky Diodes with a Nano-Dot Structure on a GaAs Substrate

  • Uhm, Won-Young;Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • In this paper, we develop a 94-GHz single balanced mixer with low conversion loss using planar Schottky diodes on a GaAs substrate. The GaAs Schottky diode has a nanoscale anode with a T-shaped disk that can yield high cutoff frequency characteristics. The fabricated Schottky diode with an anode diameter of 500 nm has a series resistance of 21 Ω, an ideality factor of 1.32, a junction capacitance of 8.03 fF, and a cutoff frequency of 944 GHz. Based on this technology, a 94-GHz single balanced mixer was constructed. The fabricated mixer shows an average conversion loss of -7.58 dB at an RF frequency of 92.5 GHz to 95 GHz and an IF frequency of 500 MHz with an LO power of 7 dBm. The RF-to-LO isolation characteristics were greater than -32 dB. These values are considered to be attributed to superior Schottky diode characteristics.

Reliability Evaluation of the WSW Device for Hot-carrier Immunity (핫-캐리어 내성을 갖는 WSW 소자의 신뢰성 평가)

  • 김현호;장인갑
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • New WSW(Wrap Side Wall) is proposed to decrease junction electric field in this paper. WSW process is fabricated after first gate etch, followed NM1 ion implantation and deposition & etch nitride layer. New WSW structure has buffer layer to decrease electric field. Also we compared the hot carrier characteristics of WSW and conventional. Also, we design a test pattern including pulse generator, level shifter and frequency divider, so that we can evaluate AC hot carrier degradation on-chip. It came to light that the universality of the hot carrier degradation between DC and AC stress condition exists, which indicates that the device degradation comes from the same physical mechanism for both AC and DC stress. From this universality, AC lifetime under circuit operation condition can be estimated from DC hot carrier degradation characteristics.

  • PDF

A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(I) : Effect of CeO2 Content on the Mechanical Properties and Fracture Behavior of Ce-TZP (CeO2 안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(I) : CeO2 함량에 따른 Ce-TZP의 기계적 성질과 파괴거동의 변화)

  • 김문일;박정현;강대석;문성환
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.719-727
    • /
    • 1989
  • By using commercial zirconia powder CeO2-ZrO2 ceramics containing 8~16mol% CeO2 was made by heat treatment at 1350~155$0^{\circ}C$ for 1~10hr. The minimum amount of CeO2 for obtaining complete tetragonal phase was 12mol%, and in the tetragonal phase region fracture toughness of Ce-TZP was decreased with increasing CeO2 content and the maximum value was obtained when 12mol% CeO2 was added. The bending strength goes through maximum at 14mol% CeO2. Fracture mode of Ce-TZP transformed from intergranular to transgranular fracture with increasing CeO2 content, so the morphology of fracture surface of 16mol% Ce-TZP was wholly transgranular and this tendency was independent on grain size. The crystal structure of the 12mol% Ce-TZP was monoclinic with fringes along the grain boundaries which are lying in the particular plane from the TEM observation. The chemical composition of the sintered body was homogeneous as a whole and some amorphism or air pocket was observed at the triple junction.

  • PDF

Fabrication of an Optical Hydrogen Sensor Based on 3C-SiC Photovoltaic Effect and Its Characteristics (3C-SiC 광기전 특성 기반 광학식 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.283-286
    • /
    • 2012
  • This paper presents the optical hydrogen sensor based on transparent 3C-SiC membrane and photovoltaic effect. Gasochromic materials of Pd and Pd/$WO_3$ were deposited by sputter on 3C-SiC membrane for gas sensing area. Gasochromic materials change to transparency by exposure to hydrogen. The variations of light intensity by hydrogen generate the photovoltaic of P-N junction between N-type 3C-SiC and P-type Si. Single layer of Pd shows higher photovoltaic compared with Pd/$WO_3$. However, phase transition from ${\alpha}$ to ${\beta}$ is shown at 6 %. Pd/$WO_3$ structure show the more linear response to hydrogen range of 2 % ~10 %. Also, almost 2 times fast response and recovery characteristics are shown at Pd/$WO_3$. These fast performances are come from the fact that Pd promoted the chemical reaction between hydrogen and $WO_3$.