• Title/Summary/Keyword: junction processes

Search Result 96, Processing Time 0.026 seconds

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF

Simulation Study of ion-implanted 4H-SiC p-n Diodes (이온주입 공정을 이용한 4H-SiC p-n Diode에 관한 시뮬레이션 연구)

  • Lee, Jae-Sang;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.128-131
    • /
    • 2009
  • Silicon carbide (SiC) has attracted significant attention for high frequency, high temperature and high power devices due to its superior properties such as the large band gap, high breakdown electric field, high saturation velocity and high thermal conductivity. We performed Al ion implantation processes on n-type 4H-SiC substrate using a SILVACO ATHENA numerical simulator. The ion implantation model used Monte-Carlo method. We simulated the effect of channeling by Al implantation in both 0 off-axis and 8 off-axis n-type 4H-SiC substrate. We have investigated the effect of varying the implantation energies and the corresponding doses on the distribution of Al in 4H-SiC. The controlled implantation energies were 40, 60, 80, 100 and 120 keV and the implantation doses varied from $2{\times}10^{14}$ to $1{\times}10^{15}\;cm^{-2}$. The Al ion distribution was deeper with increasing implantation energy, whereas the doping level increased with increasing dose. The effect of post-implantation annealing on the electrical properties of Al-implanted p-n junction diode were also investigated.

Study of Boron Doping Feasibility with Atmospheric Pressure Plasma for p-n Junction Formation on Silicon Wafer for Semiconductor (p-n 접합 형성을 위한 반도체 실리콘 웨이퍼 대기압 플라즈마 붕소 확산 가능성 연구)

  • Kim, Woo Jae;Lee, Hwan Hee;Kwon, Hee Tae;Shin, Gi Won;Yang, Chang Sil;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.20-24
    • /
    • 2017
  • Currently, techniques mainly used in semiconductor impurity diffusion processes include furnace thermal diffusion, ion implantation, and vacuum plasma doping. However, there is a disadvantage that the process equipment and the unit cost are expensive. In this study, boron diffusion process using relatively inexpensive atmospheric plasma was conducted to solve this problem. With controlling parameters of Boron diffusion process, the doping characteristics were analyzed by using secondary ion mass spectrometry. As a result, the influence of each variable in the doping process was analyzed and the feasibility of atmospheric plasma doping was confirmed.

  • PDF

Blood-Testis Barrier and Sperm Delayed in the Cauda Epididymis of the Reproductively Regressed Syrian Hamsters

  • Jeon, Geon Hyung;Lee, Sung-Ho;Cheon, Yong-Pil;Choi, Donchan
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Syrian (golden) hamsters are seasonal breeders whose reproductive functions are active in summer and inactive in winter. In experimental facility mimicking winter climate, short photoperiod (SP) induces gonadal regression. The blood-testis barrier (BTB) of the sexually involuted animals have been reported to be permeable, allowing developing germ cells to be engulfed or sloughed off the epithelium of the seminiferous tubules. The expressions of genes related to the tight junction composing of BTB were investigated in the reproductive active and inactive testes. Claudin-11, occludin, and junctional adhesion molecule (JAM) were definitely expressed in the active testes but not discernably detected in the inactive testes. And spermatozoa (sperm) were observed in the whole lengths of epididymides in the active testes. They were witnessed in only cauda region of the epididymides but not in caput and corpus regions in animals with the inactive testes. The results imply that the disorganization of BTB is associated with the testicular regression. The developing germ cells are swallowed into the Sertoli cells or travel into the lumen, as supported by the presence of the sperm delayed in the last region of the epididymis. These outcomes suggest that both apoptosis and desquamation are the processes that eliminate the germ cells during the regressing stage in the Syrian hamsters.

Glutamine Deprivation Inhibits Invasion of Human Prostate Carcinoma LnCap Cells through Inactivation of Matrix Metalloproteinases and Modulation of Tight Junctions (글루타민 결핍에 따른 Tight Junction 및 MMPs 활성 조절을 통한 전립선 암세포의 침윤 억제 현상)

  • Shin, Dong Yeok;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1167-1174
    • /
    • 2013
  • Cancer cells exhibit increased demand for glutamine-derived carbons to support anabolic processes. Indeed, the spectrum of glutamine-dependent tumors and the mechanisms through which glutamine supports cancer metabolism remain areas of active investigation. In the present study, we investigated the effects of glutamine deprivation on the correlation between tightening of tight junctions (TJs) and anti-invasive activity in human prostate carcinoma LnCap cells. Glutamine deprivation markedly inhibited cell motility and invasiveness in a time-dependent manner. The anti-invasive activity of glutamine deprivation was associated with an increased tightness of the TJ, which was demonstrated by an increase in transepithelial electrical resistance (TER). The activities of matrix metalloproteinase (MMP)-2 and MMP-9 were inhibited in a time-dependent fashion by glutamine deprivation, which was correlated with a decrease in expression of their mRNA and proteins and up-regulation of tissue inhibitors of metalloproteinases (TIMPs) expression. Furthermore, glutamine deprivation repressed the levels of the claudin family members, which are major components of TJs that play a key role in the control and selectivity of paracellular transport. Moreover, the levels of E-cadherin, a type I transmembrane glycoprotein, and snail, an epithelial to mesenchymal transition regulator and zinc finger transcription factor, were markedly modulated by glutamine deprivation. Taken together, these findings suggest that TJs and MMPs are critical targets of glutamine deprivation-induced anti-invasion in human prostate carcinoma LnCap cells.

Evaluation of high-velocity impact welding's interfacial morphology between Cu and CP-Ti using SPH numerical analysis method (SPH 해석기법을 이용한 Cu와 CP-Ti 고속 충돌 접합 단면의 형상학적 평가)

  • Park, Ki Hwan;Kang, Beom Soo;Kim, Jeong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.34-42
    • /
    • 2019
  • The existence of different thermodynamic properties results in various undesirable effects, such as thermal deformation and residual stress, in heat-welding processes. The solid-state junction, by using explosive or electromagnetic forces, i.e., high-velocity impact welding without employing heat is advantageous in joining materials with different thermodynamic properties. In the solid-state junction, the joining is performed within a short time, a high velocity and large deformations are accompanied by interfacial surfaces. The numerical analysis models play an important role in the understanding of the mechanism of high-velocity impact welding. However, in the analysis of high velocity and large deformations, the conventional Lagrangian method has low reliability due to the occurrence of entanglements. In this study, high-velocity impact welding between Cu and CP-Ti with different thermodynamic properties was performed using a un-gridded numerical method, SPH (Smoothed Particle Hydrodynamics), and interfacial morphology occurred. As a result of the analysis, the interfacial morphology was confirmed and the compared degree of shape (straight, vortex), period, length, and so on appeared differently depending on the relationship between the parameters (impact angle and speed).

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Enhancement of Photovoltaic Performance of Fluorescence Materials added TiO2 electrode in Dye-sensitized Solar Cells (형광물질을 이용한 염료감응태양전지의 효율향상)

  • Cheon, JongHun;Lee, JeongGwan;Jung, MiRan;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies and low cost processes compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photo excited dyes into the conduction band of the semiconductor electrode. The oxidized dye is reduced by the hole injection into either the hole conductor or the electrolyte. Thus, the light harvesting effect of dye plays an important role in capturing the photons and generating the electron/hole pair, as well as transferring them to the interface of the semiconductor and the electrolyte, respectively. We used the organic fluorescence materials which can absorb short wavelength light and emit longer wavelength region where dye sensitize effectively. In this work, the DSSCs were fabricated with fluorescence materials added $TiO_2$ photo-electrode which were sensitized with metal-free organic dyes. The photovoltaic performances of fluorescence aided DSSCs were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were measured in order to characterize the effects of the additional light harvesting effect in DSSC. Electro-optical measurements were also used to optimize the fluorescence material contents on TiO2 photo-electrode surface for higher conversion efficiency (${\eta}$), fill factor (FF), open-circuit voltage (VOC) and short-circuit current (ISC). The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

An Recognition and Acquisition method of Distance Information in Direction Signs for Vehicle Location (차량의 위치 파악을 위한 도로안내표지판 인식과 거리정보 습득 방법)

  • Kim, Hyun-Tae;Jeong, Jin-Seong;Jang, Young-Min;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.70-79
    • /
    • 2017
  • This study proposes a method to quickly and accurately acquire distance information on direction signs. The proposed method is composed of the recognition of the sign, pre-processing to facilitate the acquisition of the road sign distance, and the acquisition of the distance data. The road sign recognition uses color detection including gamma correction in order to mitigate various noise issues. In order to facilitate the acquisition of distance data, this study applied tilt correction using linear factors, and resolution correction using Fourier transform. To acquire the distance data, morphological operation was used to highlight the area, along with labeling and template matching. By acquiring the distance information on the direction sign through such a processes, the proposed system can be output the distance remaining to the next junction. As a result, when the proposed method is applied to system it can process the data in real-time using the fast calculation speed, average speed was shown to be 0.46 second per frame, with accuracy of 0.65 in similarity value.

Optically Controlled Silicon MESFET Fabrication and Characterizations for Optical Modulator/Demodulator

  • Chattopadhyay, S.N.;Overton, C.B.;Vetter, S.;Azadeh, M.;Olson, B.H.;Naga, N. El
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.213-224
    • /
    • 2010
  • An optically controlled silicon MESFET (OPFET) was fabricated by diffusion process to enhance the quantum efficiency, which is the most important optoelectronic device performance usually affected by ion implantation process due to large number of process induced defects. The desired impurity distribution profile and the junction depth were obtained solely with diffusion, and etching processes monitored by atomic force microscope, spreading resistance profiling and C-V measurements. With this approach fabrication induced defects are reduced, leading to significantly improved performance. The fabricated OPFET devices showed proper I-V characteristics with desired pinch-off voltage and threshold voltage for normally-on devices. The peak photoresponsivity was obtained at 620 nm wavelength and the extracted external quantum efficiency from the photoresponse plot was found to be approximately 87.9%. This result is evidence of enhancement of device quantum efficiency fabricated by the diffusion process. It also supports the fact that the diffusion process is an extremely suitable process for fabrication of high performance optoelectronic devices. The maximum gain of OPFET at optical modulated signal was obtained at the frequency of 1 MHz with rise time and fall time approximately of 480 nS. The extracted transconductance shows the possible potential of device speed performance improvements for shorter gate length. The results support the use of a diffusion process for fabrication of high performance optoelectronic devices.