• Title/Summary/Keyword: jumping problem

Search Result 37, Processing Time 0.02 seconds

BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL ELLIPTIC JUMPING PROBLEM WITH CROSSING n-EIGENVALUES

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2019
  • This paper is dealt with one-dimensional elliptic jumping problem with nonlinearities crossing n eigenvalues. We get one theorem which shows multiplicity results for solutions of one-dimensional elliptic boundary value problem with jumping nonlinearities. This theorem is that there exist at least two solutions when nonlinearities crossing odd eigenvalues, at least three solutions when nonlinearities crossing even eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the elliptic eigenvalue problem and Leray-Schauder degree theory.

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

ONE-DIMENSIONAL JUMPING PROBLEM INVOLVING p-LAPLACIAN

  • Jung, Tacksun;Choi, Q-Heing
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.683-700
    • /
    • 2018
  • We get one theorem which shows existence of solutions for one-dimensional jumping problem involving p-Laplacian and Dirichlet boundary condition. This theorem is that there exists at least one solution when nonlinearities crossing finite number of eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the p-Laplacian eigenvalue problem when 1 < p < ${\infty}$, variational reduction method and Leray-Schauder degree theory when $2{\leq}$ p < ${\infty}$.

INFINITELY MANY SOLUTIONS OF A WAVE EQUATION WITH JUMPING NONLINEARITY

  • Park, Q-Heung;Jung, Tack-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.943-956
    • /
    • 2000
  • We investigate a relation between multiplicity of solutions and source terms of jumping problem in wave equation when the nonlinearity crosses an eigenvalue and the source term is generated by finite eigenfunctions. We also show that the jumping problem has infinitely many solutions when the source term is positive multiple of the positve eigenfunction.

  • PDF

TOPOLOGICAL APPROACH FOR THE MULTIPLE SOLUTIONS OF THE NONLINEAR PARABOLIC PROBLEM WITH VARIABLE COEFFICIENT JUMPING NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.1
    • /
    • pp.101-109
    • /
    • 2011
  • We get a theorem which shows that there exist at least two or three nontrivial weak solutions for the nonlinear parabolic boundary value problem with the variable coefficient jumping nonlinearity. We prove this theorem by restricting ourselves to the real Hilbert space. We obtain this result by approaching the topological method. We use the Leray-Schauder degree theory on the real Hilbert space.

ELLIPTIC PROBLEM WITH A VARIABLE COEFFICIENT AND A JUMPING SEMILINEAR TERM

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.125-135
    • /
    • 2012
  • We obtain the multiple solutions for the fourth order elliptic problem with a variable coefficient and a jumping semilinear term. We have a result that there exist at least two solutions if the variable coefficient of the semilinear term crosses some number of the eigenvalues of the biharmonic eigenvalue problem. We obtain this multiplicity result by applying the Leray-Schauder degree theory.

GEOMETRIC RESULT FOR THE ELLIPTIC PROBLEM WITH NONLINEARITY CROSSING THREE EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.507-515
    • /
    • 2012
  • We investigate the number of the solutions for the elliptic boundary value problem. We obtain a theorem which shows the existence of six weak solutions for the elliptic problem with jumping nonlinearity crossing three eigenvalues. We get this result by using the geometric mapping defined on the finite dimensional subspace. We use the contraction mapping principle to reduce the problem on the infinite dimensional space to that on the finite dimensional subspace. We construct a three dimensional subspace with three axis spanned by three eigenvalues and a mapping from the finite dimensional subspace to the one dimensional subspace.

MULTIPLE SOLUTIONS FOR THE NONLINEAR PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.251-259
    • /
    • 2009
  • We investigate the multiple solutions for the nonlinear parabolic boundary value problem with jumping nonlinearity crossing two eigenvalues. We show the existence of at least four nontrivial periodic solutions for the parabolic boundary value problem. We restrict ourselves to the real Hilbert space and obtain this result by the geometry of the mapping.

  • PDF

CRITICAL POINT THEORY AND AN ASYMMETRIC BEAM EQUATION WITH TWO JUMPING NONLINEAR TERMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.299-314
    • /
    • 2009
  • We investigate the multiple nontrivial solutions of the asymmetric beam equation $u_{tt}+u_{xxxx}=b_1[{(u + 2)}^+-2]+b_2[{(u + 3)}^+-3]$ with Dirichlet boundary condition and periodic condition on t. We reduce this problem into a two-dimensional problem by using variational reduction method and apply the Mountain Pass theorem to find the nontrivial solutions of the equation.

  • PDF