• 제목/요약/키워드: jumping motion

검색결과 59건 처리시간 0.02초

게임 캐릭터의 점프 동작 요인이 시각적 효과에 미치는 영향 (Affection of Game Character's Jumping Motion Factors on Visual Effects)

  • 고혜영;윤선정
    • 한국게임학회 논문지
    • /
    • 제11권4호
    • /
    • pp.3-14
    • /
    • 2011
  • 본 논문은 게임 캐릭터의 자연스러운 점프 동작을 위해 점프 동작요인들이 시각적 효과에 미치는 영향을 분석하였다. 우선, 자연스러운 점프동작을 보여주는 상용 게임 3개를 선정하고 각 게임에서 4가지 체형별 캐릭터 점프 영상을 추출하였다. 이것을 점프동작의 4가지 주요 원칙인, 도약시의 힘, 착지시의 충격, 착지시의 탄력성과 동작의 유연성으로 평가하였다. 그리고 점프 동작별로 시간, 거리, 각도 요인으로 측정하였다. 최종적으로, 게임 캐릭터의 시각적 효과와 동작 요인들과의 일관된 특징을 분석하여 제시하였다. 본 연구는 자연스러운 캐릭터 점프 동작 구현을 위한 기초 자료로 활용이 될 수 있을 것이다.

작은 스케일의 생체 모방 수상 점프 로봇 (a biologically inspired small-scale water jumping robot)

  • 신봉수;김호영;조규진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1427-1432
    • /
    • 2008
  • This paper describes the locomotion of a water jumping robot which attempts to emulate the fishing spider’s ability to jump on the water surface. While previous studies of the robots mimicking arthropods living on water were focused on recreating their horizontal skating motions, here we aim to achieve a vertical jumping motion. The robot jumps by pushing the water surface with rapidly released legs which were initially bent. The motion is triggered with a latch driven by the shape memory alloy actuator. The robot is capable of jumping to the maximum height of 26mm. Jumping efficiency, defined the maximum jumping height on water over the maximum jumping height on rigid ground, is 0.26 This work represents a first step toward robots that can locomote on water with superior versatility including skating and jumping.

  • PDF

점핑링 및 센서 시스템 개발과 동적 신경망 제어기 설계 (The Development of Jumping Ring with Sensor System and Design of Dynamic Neural Controller)

  • 박성욱;권기진;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.540-542
    • /
    • 1999
  • We develop jumping ring system with sensor and control system using dynamic neural networks. Jumping ring, sensor and control system are controlled by 586 PC using Turbo C program. Sensor system is composed of 20 optical sensors and encoder. The control circuits are consisted of thyristor, FET and phase controller. A/D converter and optical sensor acquire real time motion data of the jumping ring system. The information of acquired jumping ring Position is estimated by using dynamic neural networks. Estimated control signals are sent to control circuits and D/A converter to track desired position of the jumping ring system. Experiment results are given to verify that proposed dynamic controller is useful in real jumping ring system.

  • PDF

모델 변환법을 이용한 점핑 로봇 제어의 운동경로 생성에 관한 연구 (A Study on Motion Planning Generation of Jumping Robot Control Using Model Transformation Method)

  • 서진호;산북창의;이권순
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.120-131
    • /
    • 2004
  • In this paper, we propose the method of a motion planning generation in which the movement of the 3-link leg subsystem is constrained to a slider-link and a singular posture can be easily avoided. The proposed method is the jumping control moving in vertical direction which mimics a cat's behavior. That is, it is jumping toward wall and kicking it to get a higher-place. Considering the movement from the point of constraint mechanical system, the robotic system which realizes the motion changes its configuration according to the position and it has several phases such as; ⅰ) an one-leg phase, ⅱ) in an air-phase. In other words, the system is under nonholonomic constraint due to the reservation of its momentum. Especially, in an air-phase, we will use a control method using state transformation and linearization in order to control the landing posture. Also, an iterative learning control algorithm is applied in order to improve the robustness of the control. The simulation results for jumping control will illustrate the effectiveness of the proposed control method.

훈련 시뮬레이터를 이용한 스키점프 도약 시 발생되는 EMG 패턴 분석 - 스키점프 유소년 국가대표 사례 연구 - (Analysis of EMG Patterns during Ski Jumping using Training Simulator - Case Study for Ski Jumping Youth National Athletes -)

  • Kim, Heungsoo;Yoon, Sukhoon
    • 한국운동역학회지
    • /
    • 제32권2호
    • /
    • pp.43-48
    • /
    • 2022
  • Objective: The purpose of this study was to verify the effectiveness among simulating ski jumping trainings by comparing with actual ski jump. Method: Three healthy youth national athletes were recruited for this study (age: 13.70 ± 0.9 yrs, height: 169.30 ± 0.9 cm, jumping caree: 5.3 ± 0.9 yrs). Participants were asked to performed ski jumping with 3 simulating and one actual situation. A 3-dimensional motion analysis with 5 channels of EMG was performed in this study. Muscle activations of Rectus Femoris [RF], Tibialis Anterior [TA], Thoracis [TH], Gluteus maximus [GM], and Gastronemius [GL] were achieved with sampling rate of 2,000 Hz during each jump. Results: In the case of S1 in the actual jumping motion, the deviation of the muscle activity peak did not appear each trial, and the jump timing was consistent. For S2, the timing of the muscles peak activation which can maintain the posture of the upper body and ankles appeared at the beginning. In the case of S3, the part maintaining the ankle posture at the beginning appeared, but it could be expected that it would progress in the vertical direction due to the activation of GL at the time of jumping. Conclusion: The muscle activation peak before the take-off point showed a different pattern for each athlete, and individual differences were large. In addition, it was attempted to confirm the actual jump with simulation jump, and it was found that not only the difference in patterns but also the fluctuations in the timing of each muscle activation peak were large.

Origin of the anomalously large upward acceleration associated with the 2008 Iwate-Miyagi Nairiku earthquake

  • Takabatake, Hideo;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.675-694
    • /
    • 2012
  • The 2008 Iwate-Miyagi Nairiku earthquake ($M_w$ 6.9, $M_{jma}$ 7.2) occurred on 14 June 2008 in Japan. The amplification and asymmetric waveform of the vertical acceleration at the ground surface recorded by accelerometers at station IWTH25, situated 3 km from the source, were remarkable in two ways. First, the vertical acceleration was extremely large (PGA = 38.66 $m/s^2$ for the vertical component, PGA = 42.78 $m/s^2$ for the sum of the three components). Second, an unusual asymmetric waveform, which is too far above the zero acceleration axis, as well as large upward spikes were observed. Using a multidegree-of-freedom (MDF) system consisting of a one-dimensional continuum subjected to vertical acceleration recorded at a depth of 260 m below ground level, the present paper clarifies numerically that these singular phenomena in the surface vertical acceleration records occurred as a result of the jumping and collision of a layer in vertical motion. We herein propose a new mechanism for such jumping and collision of ground layers. The unexpected extensive landslides that occurred in the area around the epicenter are believed to have been produced by such jumping under the influence of vertical acceleration.

태권도 자유 품새에 적용하기 위한 뛰어 앞차기 착지 동작의 상해 예방 전략 (Injury Prevention Strategies of Landing Motion of Jumping Front Kick to Apply Free Style Poomsae of Taekwondo)

  • Ryu, Sihyun
    • 한국운동역학회지
    • /
    • 제30권1호
    • /
    • pp.37-49
    • /
    • 2020
  • Objective: The purpose of this study was to investigate the injury factors of Taekwondo jumping kick during landing phase according to the experience of injury and to suggest a stable landing movement applicable to free style Poomsae. Method: The participants were non-injury group (NG), n = 5, age: 20.5±0.9 years; height: 171.6±3.6 cm; body weight: 65.7±4.4 kg; career: 5.0±2.7 years. Injury group (IG), n = 9, age: 21.0±0.8 years; height: 170.9±4.6 cm; body weight: 67.1±7.0 kg; career: 8.6±5.0 years. The variables are impact force, loading rate, vertical stiffness, lower limb joint angle, stability, balance, and muscle activity in the landing phase. Results: NG was statistically larger than IG in the gluteus medius (p<.05). The impact force, loading rate and vertical stiffness decreased as the landing foot angle, the ROM of lower limb joint angle and COM displacement increased (p<.05). Conclusion: Based on the results, it means that the landing foot angle plays an important role in the impact reduction during landing phase. It is required the training to adjust the landing foot angle.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

진자 시스템에서의 새로운 도약 현상의 실험적 관측과 이론적 해석 (Experimental Observation of New Jumping Phenomena in the Pendulum System and Its Analytical Approach)

  • 최동준;정완섭;김수현
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.439-446
    • /
    • 1996
  • This paper introduces a newly designed pendulum system that enables the more accurate boservation of dynamic behaviour arising from both horizontal and vertical(i.e. two dimension) excitation. First, experiments were carried out to examine the frequency responses of the devised pendulum system. Interestingly, experimental results for the three excitation angles of 22, 32 and 48 degree show 'new' jump phenomena. For the further understanding of these phenomena, experimental investigationhas been made to identify the equation of motion of the pendulum system from experimental data. This attempt has revealed that the viscous, coulomb and aerodynamic damping factors are involved in the equation of motion. By applying the Ritz averaging method to the equation, it becomes apparent that the jumping phenomena of the pendulum system in this work is more theoretically understood.

  • PDF

수직점프 시 비탄력 테이핑이 발목 발등굽힘과 하퇴삼두근의 근활성도에 미치는 영향 (Effect of Non-elastic Taping on Ankle Dorsiflexion and Activity of the Triceps Surae Muscles While Vertical Jumping)

  • 김근수;원종혁;정도영
    • 대한물리의학회지
    • /
    • 제11권4호
    • /
    • pp.11-17
    • /
    • 2016
  • PURPOSE: There are several standard interventions for managing Achilles tendinitis, including eccentric exercise and calf muscle stretches, orthoses, electrotherapy, and taping. However, no study has determined the effect of non-elastic taping on deloading the Achilles tendon while vertical jumping. Therefore, this study determined the effect of non-elastic taping on ankle dorsiflexion and the triceps surae muscle activity while vertical jumping in healthy subjects. METHODS: The study recruited 17 participants. A motion analysis system was used to measure the angle of ankle dorsiflexion and wireless surface electromyography was used to measure the soleus and gastrocnemius activities while vertical jumping. Non-elastic taping was applied on randomized leg side. All subjects performed maximal effort vertical jumps without and with non-elastic taping, with three trials for each condition. The mean peak dorsiflexion and muscle activities during the three trials were calculated and paired t-tests were used to compare the mean values without and with non-elastic taping. Significance was defined as (p<.05). RESULTS: The maximum angle of ankle dorsiflexion and activity of the gastrocnemius muscle decreased significantly when non-elastic tape was applied (p<.05), while there was no significant difference in the soleus activity between no-taping and taping (p>.05). CONCLUSION: We introduce non-elastic taping as a method to decrease maximum ankle dorsiflexion and gastrocnemius activity while vertical jumping.